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Preface

What M x does

MX is a structural equation modeling padkage, bu it isflexible enough to fit a variety of
other mathematica models. At its heat is a matrix algebra procesor, which can be used
by itself. There ae many built-in fit functions to enable structural equation modeling and
other experimentsin matrix algebra and statisticad modeling. It off ersthe fitting functions
found in commercia software such as LISREL, LISCOMP, EQS, SEPATH, AMOS and
CALIS, including faaliti esfor maximum likeli hoodestimation d parametersfrom missng
data structures, under normal theory. Complex ‘norstandard’ models are eay to spedafy.
For further general applicability, it allows the user to define their own fit functions, and
optimization may be performed subjed to linea and norinea equality or boundry
constraints.

How to Read this Manual

The bad newsisthat this manual isquite long; the good rewsisthat you dort neel to read
it all! Chapter 1 contains an introductionto multivariate path modeling. The"how to" part
of themanual startsin Chapter 3, in which general syntax conventionsandjobstructure ae
laid out, followed by description d the ammmands necessary to read data. Chapter 4 deds
withtheheat of Mx: how to define matricesand matrix algebraformul aefor model -fitting,
and ways of estimating and constraining parameters. Methods of changing the default
fit-function, of deaeasing and increasing the quantity (and quality) of the output, and for
fitting sub-models efficiently, are described in Chapter 5. The last chapter supgdies and
briefly describes a number of example scripts. The Appendices describe the use of MX
under diff erent operating systems, error codes, introductory matrix algebra and redprocd
causation.

Origin

The development of Mx owesmuchto LISREL and| acknowledgethe pioneeing eff ort put
in byKarl Joreskog & Dag Sérbom. There ae many who have suppated and encouraged
this effort in many different ways. | thank them all, and espedally Lindon Eaves, Ken
Kender and John Hewitt since they also provided grant suppat?, and David Fulker for
allowing modification d hisnotes on matrix algebrato be supdied as an appendix to this
manual. Jadk McArdle and Steve Boker provided excdlent path dagram drawing software
(RAMPATH) which was the basis for the development of MXx Graph, Luther Atkinson
suggested the binary file save option; Buz Brown programmed the Redangular file rea,
Karen Kenny and JohnFritz organized the interadive website; these df ortswere part of the
excdlent software, hardware and consultancy suppat supgdied by University Computing
Services at the Medicd College of Virginia, VirginiaCommonwedth University. The MX

! The aithor was sippated by ADAMHA grants MH-40828 MH-45268 AG-04954 MH-45127and RR-
08123
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team includes my colleagues Drs. Steve Boker, Hermine Maes, Mr. Gary Xie and Wayne
Hadady.

What’ s New in 1999

New inthiseditionisthe Mx Graphicd interfacedocumentation. Chapter 2 describeshow
to take advantage of this software which isavail able for the MSWindows (Win3.X98/NT)
platform. Jobsbuilt with dagramsor scripts can be exeauted onaUnix server to get results
more quickly for CPU intensive modeli ng.

Several feaures have been added to enable modeling ordinal data. P ?isthe ordinal file
command,which operateslike aredangular fileread except that it expedsordinal datawith
a lowest caegory of zero. Likelihoads are then computed using numericd integration
software provided by Genz (1992. The same software isused in the latest functionwhich
returns all of the cdl propationsfor a mvariance matrix and set of thresholds.

A new frequency command (described on p?) supdements the weight command by
alowing different cases to have different weights. This feaure all ows data-weighting
approadies to be implemented.

A number of new feguresimprove the quantity and quality of statistica and matrix outpuit.
First, the diff erence between a supermodel and asubmodel can be cmmputed automaticaly
if theoptionIsst isused to identify a supermodel, or if option sat is used to enter the fit of
a supermodel against which new models are to be compared. Matrix ouput can be
formatted with any legal Fortran format, and matrices written can be gppended to existing
files. Thislatter feadureisuseful for ssimulationwork becaise the results of several model-
fitting runs can be written to the same fil e for later analysis.

Several new examples have been added, bdh to the text and to the Mx website. It isa
pleasure to continue to dffer Mx free of charge, which all ows rapid fixing of bugs and
immediate release of new feaures.

I nternet Support

MX is puldic domain; it isavail able from the internet at http://griffin.vcu.edu/mx/. With
a suitable browser, you can oltain the program, documentation and examples, send
comments, seethelatest versionavail able for your platform, and so on. E-mail bug reports,
requests for further information, and most important your comments and suggestions for
improvements to neale@psycho.psi.vcu.edu - it is hard to overemphasize the importance
of constructive aiticism. Y ou can also grab the code for avariety of operating systemsvia
anorymous ftp to opal .vcu.edu. Please have the aurtesy (and self-interest) to E-mail me
so that | can kegp you informed of updates, bug reports etc.

A graphicd interfacefor structural equationmodeling, “Mx Graph” iscurrently ina pha-test
to Mx that will relievethe user of getting to grips with the detail s of scripts. Evenwith this
interface knowledge of the script language is necessary to use alvanced feaures and
methods. The good rewsisthat amuch deeper understanding of modeling can come from
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thisactivity. We aein the processof revising the script language to enhanceitsflexibility

and readabilit y.

Tednical Support

A number of users have been most helpful finding errorsin the documentation a software
or bath, and for suggesting new feaures that would make MX easier to use. Thank you! |
hopethat all userswill forward any comments, bug reports, or wish-liststo me. My current

addressis:

addess Department of Psychiatry
VirginiaInstitute for Psychiatric and Behavioral Genetics
Box 126MCV
RichmondVA 232980126,USA

phore 804 828 3369

fax 804 828 1471

E-mail nede@psycho.psi.vcu.edu (internet)

and my order of preferencefor communicationis E-mail, fax, phore and snail mail. When
reporting problems, E-mail i s espedally useful to include the problem file.

Tofind

Goto
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Appendix C
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1

Introduction to
Structural Equation M odeling

What you will find in thischapter

u Guidelines for buil ding your own scripts
u A brief introduction to the caabiliti es of Mx.
u Threediff erent ways to implement a structural equation model in Mx

1.1 Guideinesfor goad Script Style

Programming, like much of life, requires compromises. We must balancethe time taken to
dothingsagainst their value. Now, there ae bath short-term considerations (“how do|l get
thisworking as soonas posdgble?”) and long-term ones (“how can | savetimein what I'm
going to be doing next week?"). Thisusually resultsin making a choice of methodthat is
based onthe following fadors:

Time taken to get the script working properly
Clarity, which can affed time to debug and modify
Efficiency of the script - how fast it runs
Flexibility - how easy it isto alter.

Normally, wewould choose amethodthat will solve our probleminthe shortest time. If we
exped to use the same basic model but with a varying number of observed and latent
variables, then it is worth spending the extratimeto write ascript in which these changes
can be made eaily.

Part of writing goodscriptsisto writethem so that you, a coll eagues can understand them.
Sometimes readability can be a the expense of efficiency, andit isupto youto dedde on
the balance between thetwo. One of the most important thingsto remember isto put plenty
of commentsin your scripts. Doing so can seem like a waste of time, bu it usualy pays
off handsomely when the scripts are read by yourself or others at alater date.

1.2 Matrix Algebra

Mx will evaluate matrix algebra expresgons. It has a simple language, which uses sngle
|ettersto represent matrices, certain charadersto represent matrix operations, andaspedal
syntax to invoke matrix functions. Thus the program can be used as a matrix algebra
cdculator, which is helpful in a variety of reseach and educaiona settings, and which
provides a powerful way to spedfy structural equation and aher mathematicd models.
Most users of multi variate statistics will need to know some matrix algebra, and Appendix
| givesabrief introductionto the subject, al ong with examples and exerciseswhich use Mx.
Even those famili ar with matrix algebra shoud review the “How to doit in MX” sedions
inthe gpendix asthat iswhere dementary principles of writing Mx scriptsareintroduced.
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1.3 Structural Equation Modeling

One of the most common wses of Mx isto fit Structural Equation Models (SEM) to data.
A nice aped of SEM isthat the models can be represented as a path dagram. Mx Graph
incorporates path dagram drawing softwarediredly; this oftwareisin a-test. For now, we
concentrate on trandating path dagrams into models ‘by hand'. This approach has the
advantage of giving greder understanding of the modeling process and can yield highly
efficient scripts which are eay to change when, for example, the number of variables
changes.

There are many acourts of SEM, which vary widely in complexity and clarity, and which
are aimed at different fields of study or different software padkages (Joreskog, K.G. &
SOrbom, 1991 Bentler, 1989 Everitt, 1984 Loehlin, 1987 McArdle & Boker 1990 Bollen
1992 Nede & Cardon 1992 Steiger, 1994. The brief account given hereisintended to
provide a pradicd guide to setting up modelsin Mx for thase with some famili arity with
path analysisor SEM. We begin with asimple, fodproof method,cdled RAM (McArdle
& Boker 1990 which would be ided except that it is inefficient for the computer to fit.
More dficient approaches will foll ow.

RAM Approach

A path diagram consists of four basic types of objed: circles, squares, one-headed and two-
headed arrows. Circles are used to represent latent (not measured) variables? and squares
correspond to the observed (or measured) variables. In a path dagram, two types of
relationship between variables are pasgble: causal and correlational. Causal relationships
are shown with aone-headed arrow going fromthe variable that is doing the caising to the
variable being caused. Correlational or covariancere ationshipsare shownwith two headed
arrows. A spedal type of covariance path is one that goes from the variable to itself.
Variationin avariables which isnot due to causal eff eds of other variablesin the diagram
isrepresented by this self-correlational path. Sometimesthisis cdled ‘residua variance
or ‘error variance .

Figure 1.1shows a sample path dagram with two latent variables and four observed. The
RAM model spedficaioninvolvesthreematrices. F, A andS. Sisfor the symmetric paths,
or two-headed arrows, and is ymmetric. A is for the asymmetric paths, or one-headed
arrows, and F isfor filtering the observed variables out of the whale set. The dimensions
of these matrices arefixed by the number of variablesinthemodel. A andSareboth mxm,
and F is mgxm, where m=my+m_is the total number of variables in the model, m, the
number of observed variables, and m, the number of latent variables. In our example we
have my=4, m =2 and m=6.

2 The use of the term ‘variable’ here may be somewhat confusing to those famili ar with operations reseach
and numericd optimization. In numericd optimization,avariableis ssomething that isto be changed to find the
optimum. In SEM, these ae cdled ‘freeparameters’ or simply ‘ parameters'.
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slielielle

Figure 1.1 Example path dagram with two latent variables (P and Q) andfour
observed variables (R, S, T, U)
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and Note how F is an elementary matrix of 1'sand Os with a1 wherever the row variable
isthe same & the wlumn variable.

Now that we have defined these matrices, computing the predicted covariancematrix under
thismodel isrelatively simple. The formulais:

F(I-A)tS(1-A)YF/
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which iseasy to program in Mx andis quite general. So, suppase that we have measured
R, S,TandU onasampleof 100subjeds, and computed the covariancematrix. How would
wefit themodd in Figure 1.1to these data, using the doveformula? A sample script might
look likethis:

! SimpTe RAM approach to fitting models
|

#Ngroups 1

#define latent 2 ! Number of Tatent variables

#define meas 4 ! Number of measured variables

#define m 6 I Total number of variables, measured + latent
Title Ram approach to fitting models I' Title

Data NInput=meas NObserved=100
CMatrix File=ramfit.cov

I Number of variables,subjects
! Reads observed covariance matrix

Matrices; ! Declares matrices
AFullmm I One-headed paths
S Symm m m ! Two-headed paths

F Full meas m

I Iden mm

End Matrices;

I Filter matrix
I Identity matrix
! End of matrix declarations

Specify A ! Set certain elements of A as free parameters
000000
000000
100000
200000
030000
040000
Specify S I Set the free parameters in S
0
50
006
0007
00008
000009

Value 1.0 S11S22

! Put 1's into certain elements of S

Matrix F ! Do the same for Matrix F but a different way
001000 I Note - this could be omitted if F had
000100 I been declared ZI instead of full.
000010
000001

Start .5 All ! Supply .5 starting value for all parameters

Covariance F & ((I-A)” & S);

End group

! Formula for model
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Thisscript isorganizedinto six sedions: (i) defines, (i) title and datareading, (iii ) declaring
matrices, (iv) putting parameters into matrices, (v) putting numbers into matrices and (iv)
the formulafor the model. More detail on all these mmporents can be foundin the body
of the manual, bu let’slook at some of the basic fedures.

Anything after ! isinterpreted as a cmment. Blank lines are inadive but serve to
visually separate the sedions of the script.

The #define statement is used to preassgn numbers to certain strings of letters.
After a ommand like#define Tatent 2, MX will i nterpret ‘latent’ as 2 whenever
it istryingtoread anumber. #NGroups indicaesthe number of groupsin the script.

TheTitlelineisrequired.
The Datalineis required and supdies essential information about the number of
variables to be analyzed (NInput vars) and the number of subjeds measured

(Nobservations).

The(CMatrix statement readsin the observed covariancematrix from afil e, in lower
triangular format. The fil e ramfit.cov might look like this:
*

1.51

31 1.17

.22 .19 1.46
.11 .23 .34 1.56

where the * indicaes freeformat.

TheMatrices lineisrequired andstartsthededaration o matricesthat will beused
in the mvariance statement. We make use of the #define’ d words to get them the
right size.

Specify putsfreeparametersinto matrices. All the usable dements of the matrix
arelisted (i.e. only the lower triangle for symmetric matrices, or only the diagonal
elements for diagonal matrices). A zero indicaes that the dement isfixed, and a
positive integer indicates that it’s free Different paositive integers represent
different free parameters; if we wished to have parameters 1 and 2 set equal, we
would replacethe 2 with a 1.

Thefixed valuesof 1for thevariances of thelatent variablesare given with aValue
statement.

Start .5 all setsall the freeparametersto .5as an initial guessof the parameter
estimates.
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u The Covariance statement supgies the formulafor the model. We have used the
& operator for quadratic matrix multiplication (A& = A*B*A’), to make the script
more efficient. It would work equally well, and orly dli ghtly more slowly with the
full expresson F*(1-A)*S*(I-A)""*F’ given above.

u End group marksthe end d the script.

What are the advantages and dsadvantages of setting up models with the RAM method?
On the positive side, it is extremely simple and general. It doesn't matter if there are
feedbadk loops, everything will be spedfied corredly (seeAppendix D). Of course, some
caemay berequired with the chaiceof starting values, but we do have apradicd method.
On the negative side, the mvariance statement involves inverting the (1-A) matrix, which
will be slow when we have many variables or aslow computer. Many models do nd need
to use matrix inversionin the mvariancestatement. Infaq, it isonly feadbadk loops which
make this necessary; we can therefore seek a simpler, more dficient spedficaion d the
model. There ae many of these, bu we shall be dming for one that is g/stematic and
straightforward.

Simplified Mx Approach for M odels without Feadback L oops

Consider Figurel.lagain. It hastwo levds of variables: PandQ at level 1,andR, S,T and
Uat level 2. We could pu al the two-headed arrows at the first level in ore matrix, all the
level 1tolevel 2 arrowsinasecondmatrix, and all the two-headed level 2 arrowsin athird
matrix. Letting these matricesbe X, Y and Z respedively, we would get:

PQ RSTU

PO R(b 0 R(fooO0O

P(1 a S|lc O S|0 00
X - VA andZ: g

Qla 1 T|0o d T{lOOhO

Uulo e Uulo 0 0 i

It so happens that all the observed variables are & the same level (2) in this model, which
makeslife eay for us. Although it may seem that we have atificialy contrived the model
to havethisdesirablefeaure, many structural equationmodels can bewrittenthisway. The
covarianceformulafor this model is:

YXY'+Z

andthis has avery simple multi variate path dagram to represent it, as svownin Figure 1.2
TogetfromFigure1l.1to Figure 1.2all wedid wasto coll apsethe vedor of variableswithin
ead level to form asingle vedor of variables at ead level. The paths are wllapsed into
matrices of paths.
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@,

yA

Figure 1.2 Multivariate path dagram for the system shown in Figure 1.1.

4.

Exercises:

1. Fit the model using the simpler X, Y and Z spedficaion.

2. Findthe dhangein chi-squared when the parameters b and ¢ are set equal
3 Pick asimple pulished model and cata and fit it with Mx with the RAM

approach
Find amore dficient methodto fit the model in 3.

To best lean haw to use Mx, readers houd attempt the exercises themselves before
reading the next sedion, which describes the answer to the first exercise.
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! Mx partly simplified approach to fitting models
|

#Ngroups 1
#define top 2 ' Number of variables in top level
#define bottom 4 ' Number of variables in bottom level

TitTle Mx simplified approach to fitting model ! Title

Data NInput=bottom NObserved=100 ! Number of variables,subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices
X Stan top top free I Two-headed, top Tlevel
Y Full bottom top ! From top to bottom arrows
Z Diag bottom bottom free I Two-headed, bottom Tevel
End Matrices; ! End of matrix declarations
Specify Y I Declare certain elements of Y as free parameters
310
32 0
0 33
0 34
Start .5 All ! Supply .5 starting value for all parameters
Covariance Y*X*Y' + 7: ! Formula for covariance model
End group

What tricks have we used here? First, the keyword Free in the matrix dedaration sedion
makes elements of matrices X andZ free Matrix X is sandardized, which meansthat it is
symmetric with I'sfixed onthe diagonal, so freeparameter number 1 goesin the lower off -
diagonal element (the upper off-diagonal element is automaticdly assgned this free
parameter aswell, because standardized matrices are symmetric). Matrix Z isdiagonal, so
it will have parameters 2 through 5 assgned to its diagonal elements. We ocould pu
parameters 6 through 9in matrix Y, but 31to 34are used instead, just to emphasi ze that we
donit want our spedficaion numbersto overlap with spedfications automaticadly suppied
by Mx when the freekeyword is encourtered at matrix dedarationtime.

Note how this gript is much shorter than the original, because of the reduced need for
spedficaion statementsto pu parametersinto matrices. Thisill ustratesavaluablefeaure
of programming with MX: with appropriate matrix formulation o the model, spedfication
statements can be eliminated. The alvantage of setting up models in this way is that
modifying themodel to cater for adiff erent number of observed or latent variables becomes
trivially simple. The more complex the model, the greaer the value of this approac.
Anather advantage isthat the computer time required to evaluate the model can be grealy
reduced. We have nat only eliminated the nead for matrix inversion when the predicted
covariancematrix isbeing ca culated, but al so reduced the size of the matricesthat arebeing
multi plied.
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Fully Multivariate Approach

We now turn to athird implementation d the same model to show how the matrix algebra
fedures can be used to make an efficient script which can be easily modified. Take anather
look at Figure 1.1. Thefirst latent fador, P, causes the first two olserved variables, Sand
T, whereas the second fador, Q, only affeds the other two observed variables, U and V.
Perhapswe exped to change the number of observed variablesin ore or other of these sets.
If so, we might want to split the causal paths into two matrices, one for eat fador. So,
what was matrix Y in the ssimplified Mx approach will be partitioned into 4 geces:

. the dfedsof PonSand T
. the dfedsof P onU andV (zero)
. the dfedsof Q onSand T (zero)
. the dfedsof QonU andV

We'll use aseparate matrix for ead of these, and use definition variables to make the
changesin their dimensions automatic.
|

! Mx multivariate approach to fitting models
|

#Ngroups 1

#define top 2 ' Number of variables in top level (P,Q)

#define left 2 ! Number of variables in bottom left Tlevel (R.S)
#define right 2 I Number of variables in bottom right level (T,U)

#define meas 4
|

TitTle Mx simplified approach to fitting model ! Title

Data NInput=meas NObserved=100 ! Number of variables & subjects
CMatrix File=ramfit.cov ! Reads observed covariance matrix
Matrices; ! Declares matrices

X Stan top top free

J Full Teft 1 free

K Zero left 1

L Zero right 1

M Full right 1 free

7/ Diag meas meas free

Two-headed, top Tevel
From P to R,S arrows
From Q to R.S (zeroes)
From P to T.U (zeroes)
From Q to T,U arrows

|
|
|
|
!
! Two-headed, bottom Tlevel

End Matrices; ! End of matrix declarations
Start .5 All ! Supply .5 starting value for all parameters
Begin Algebra;
Y =J|K _
LM ;

End Algebra;

Covariance Y*X*Y' + Z; I Formula for model
End group
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S0, the major change here is to use the dgebra sedion to compute matrix Y. We have
eliminated the need for a spedfication statement by applying the keyword freeto matrices
Jand M. If wethouwght that we might expand the model to have more than ore fador for
eadt side, then we could further generali ze the script by changing the matrix dimensions
from 1 to #define' d variables.

1.4 Other Types of Statistical M odeling

Theexampleinthischapter only dedswithfitting astructural equationmodel to covariance
matrices, bu Mx will do much more than this! There ae many types of fit function bult
in to hande different types of datafor structural equation modeling, including:

Means and covariance matrices
Correlation matrices with weight matrices
Contingency tables

Raw data

Also, the program’s multigroup and algebra caabiliti es cater for tests of heterogeneity,
norlinea equality andinequality constraints, andmany other aspedsof advanced structural
modeling.

Mx hasapowerful set of matrix functionsand astate-of-the-art numerica optimizer, which
makeit suitableto implement many other types of mathematica model. One aucial feaure
makes this possble — user-defined fit functions. The program will optimize dmost
anything. Given famili arity with matrix algebra and the basics of MX syntax, it is often
much quicker to implement anew model with Mx than to write aFORTRAN or C program
spedficdly for thetask. A dlight drawbadk isthat the MX script may run more slowly than
a purpose built programs, althouwgh this is usually well worth the saving in development
time.
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2 Introduction tothe
M X Graphical User Interface

What you will find in thischapter

How to use Mx Graphicd User Interface(GUI) to:

21 UsingMx GUI

Draw path dagrams

Automaticdly creae and run scripts from diagrams
View & print results on dagrams

RunMx scripts

View output in Projed Manager, HTML or text formats
Edit and debug MX scripts

Compare results and export them to ather programs.

Mx GUI can be started by doule dicking the Mx icon in either the group window in
Windows 3.xx, or from the Start menuin Windows 95. In Windows 95 you may drag the
Mx 32 icon from the explorer to the desktop to creae ashortcut, which will simplify

starting the program.

File Edit Seach MsPioject Dutput PathDiagram Preference  'window Help

s R S = = s [ PN S S 0 S S

| Parsing Complete CAPS [MUM | SCRL |OWR
#s Group 1 Free factor mean ©a Group 2 Factor mean = 0 =] 3
Run | Parse | ToScript | Datali Run | Parse | ToScript | DataMap | Manager |
i a
Rtwrod? 0.41
0.00
[-0.16 0.14) 0.00
H Q
i+ Mx Project Manager Window [_ o] =]
Job Group Matrix ToScript Delete Undo Run View

0.62

434 Symm
4xd Full
Fud Full G

x4 Iden G
KN 2

Matrix Column|Matrix Type [Matrix Role |

e Symm ~||Generic ~|

Figure 2.1

Value 1 2 <4 4
Statistics AR WEARE WEARS H
1 |vari 0.693 ] ] ] =
2 |veR2 i 0.593 i i
3 [vaRrs a a 0.693 a _|;I
1 | »

Mx GUI with Projed Manager Window and two dagram windows open
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Figure 2.1showsadiagram of thelayout of the Mx GUI when the Projed Manager window
is adive. The button ber icons are grouped into: filing, editing, printing, runnng, and
drawing. As with any GUI you are freeto behave & you like, clicking on butons in any
order. There ae, however, somelogicd waysto proceal that will savetime. The purpose
of thischapter isto demonstrate the capabiliti esof theinterface ad hav to useit efficiently.

Youcan draw path dagrams at any time during an Mx sesson. A diagram which iseither
visibleinawindow or minimizediscaled open. AnMxX script can be auitomaticdly creded
from all open dagrams, sent to the Projed Manager, and run. Parameter estimates will be
displayed in the diagrams.

Path diagrams are models of latent variables (circles) and olserved variables (squares),
which are related by causal (one-headed) and covariance (two-headed) paths. While
diagrams can be drawn and printed in the dstrad, to fit models we must attach - or ‘map’
-our datato the squares. Mapping datais the best starting point for drawing a diagram.

2.2 Fitting aSimple Model

Preparing the Data

We start with a simple dataset: a cvariance matrix based ona sample of 123 subjeds
measured ontwo variables, X and Y. Thisinformationisentered in a .dat file, which for
thosefamili ar with Mx natation,containstheData,CMatrix, andLabels part of anMXx script:
Data Ninput=2 Nobservations=123

CMatrix

.95

.b5 1.23

Labels X Y

Thisfileis supdied with Mx Gui; biv.dat wasinstall ed in the examples subdredory of the
Mx install ation diredory. For detailson hav to use other types of data, see dapter 3. To
creaethefileyourself, any text editor, such as Microsoft's Edit program or Notepad will do.
Thereis atext editor built i nto the Mx GUI, and by chocsing the menuitem File|New, o
clicking the new fileicon-[3:, anew file can be alited and saved from the File menu a by
clicking the savefile [Z1. If thefil eis created with awordprocesor such as Wordperfedt or
Word, it must be saved as ASCII text.

Drawing the Diagram

To start a new diagram, click onthe ‘new drawing’ icon [#=1 then click the button marked
[DataMap]. Then click the biv.dat file to open. The program then shows a list of the
variables in this file. You can highlight one or more of these variables by using click,
shift-click, click and drag, or control-cli ck - theusual Microsoft Windowsconventions. Get
baoth X and 'Y highlighted by positioning the pointer over the X variable, pressng the left
mouse button dawvn, dragging it to the Y variable, and then releasing the mouse button. X
and Y shoud naw be highlighted in blue. Hit and two new observed variables will
appea in the diagram ready for analysis (they may have gpeaed behind the data map
window). Click to close the data map window.
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Note that the variables are aeaed with variance paths £ (small doule-headed arrows).
These paths represent residual variance; they are sometimes cdl ed autocorrelational paths.
Thisiscdled a‘null model’. It has only variances and nocovariances.

Fitting the Model

Click [Run] to runthisjob. Youwill haveto suppy ajob reme andafile name. Enter null
for bath, withou any file extension. Mx GUI will then buld, save and run the script file
null.mx. Inaddtion Mx automaticdly savesthe diagram into the filenul1.mxd which can
be reloaded | ater.

While the job is runnng, a counter appeas. The numbersit displays show that the Mx
engineis dill trying to solve the problem. When it has finished the message ‘ Parsing to
Core’ may appea, indicding that the graphicd interfaceis busy interpreting the results.
Oftenthis gep is o fast that it isinvisible.

Viewing Results

Results Panel

After the job has run, the Results Panel appeas (seeFigure 2.2). It contains information
abou the status of the optimization; in thisexample, thewords* AppeasOK’ shoud beon
the top line, meaning that the solutionit foundis very likely to be aglobal minimum?.

Results Panel E3
Optimization: Appears OF.
ML ChiSq | 25432 [24.301, 24.551] Dif 2
Probability | 0,000 Parameters | 8
AlC 21432 [20.301, 20.551) Statistics |10
AMSEA | D316 (0,309, 0.310) Conztraints | 0
» » Help |

Figure 2.2 The Results Panel to view the results

Table2.1 Correspondence between optimization codes and IFAIL parameter

Optimization Code IFAIL  Serious Action

Failed! Incomputable -1 Yes Ched output & script for errors

AppeasOK Oorl No Carefully accept results

Failed! Constraint Error 3 Yes Ched output & script for
constraint errors

Failed! Toofew iterations 4 Yes Restart from estimates

Posgbly Fail ed 6 Sometimes  Restart from estimates

Failed! Boundhry Error 9 Yes Send script & datato

nede@psycho.psi.veu.edu

3 For reference, other passble Optimization conditi ons are shown in Table 2.1.
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The next line indicaes the type of fitting function wsed, ML ChiSq, which is the usual
Maximum Likelihood fit function for covariance matrices, scded to yield a x*
goodressof-fit of the model. The y?is39.546in this example, with lower and upgr 90%
confidenceintervalsof 21.564and 62.95fespedively. Thereisonedegreeof freedom, and
the model fits very poaly (p=.000. There ae two free parameters estimated (the two
variance parameters) and threeobserved statistics (the two variances and the covariance).
Akaike's Information Criterion (AIC) is greaer than zero, refleding poa fit. This
impressonis suppated by the RMSEA statistic, which shoud be .05 a lessfor very good
fit, or between .05and .10for goodfit. The high value of .538for RMSEA, and its 90%
confidence intervals which do na overlap regions of goodfit (0.393is gredaer than .10
indicaethat themodel doesnat fit well. Click ontheto removethe ResultsPanel. The
Results Panel can be reviewed later by seleding the Output|Fit Results option.

Viewing Resultsin the Diagram

When the Results Panel closes, the estimates of the variance parameters for this model
bemmevisibleinthediagram, onthe doude-headed arrows. Theresults panel information
has been copied into the diagram. Theseresults can be deleted entirely (click ontheresults
box in the diagram and ht delete or ctrl-x) or the spedfic dements may be seleded for
viewing and grinting. To dsplay only thefit and pvaluewewould doube dick theresults
boxto kring uptheresultsboxand changethe seledionsas snownin Figure 2.3. If the null
optioninthe Preferences|Job options panel (seep 24 wasused to thesedata, the grayed-out
fit statistics would be avail able for display in the diagram.

| Fit Status v| Constraints
| Fit Type v oo x
| Group Fit Value vt

| Total Fit Walue V|-

| Probability v

| AIC v

_ | RMSEA v

| Deagrees of Freedor v

| Free Para vt

_| Dbserved Statistic: | v/ -

ok I Cancel | Help |

Figure 2.3 The Results Box Panel to Change the results displayed in the diagram

Projed Manager

More information abou this model can be foundin the Projead Manager - click the
button (or the todlbar iconk= |, to open thiswindow. Highlighted, the script file
nameisin theleft panel, the group remeisin the midd e panel, and the first matrix in this
group is in the right hand panel. The values in this matrix are shown in the Matrix
Spreadshed at the battom of the Projea Manager window.

Fit satisticsfor themodel are shown in the left-hand panel of the manager, F: 39.546 leing
the value reported in the Results Panel. Y ou can seethe degrees of freedom, df: 1, in the
left-hand Projed Manager panel aswell, but depending onyour display youmay haveto use
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the dlider at the battom of the panel or resize the window to seethem. Moreinformation on
the fit of the model can be seen in the matrix spreadsheet at the bottom of the Projed

Manager by cli cking the[Statistics| button. Cli ck on[Statistics| againto toggletheview bad
to the highli ghted matrix.

Inthemidd e panel isalist of thegroupsinthejob - there'sonly onegroupinthiscase. In
theright hand panel isalist of matrices used to definethemodel (I, A, FandS), along with
the observed covariance matrix (ObsCov), expeded covariance matrix (ExpCov) and the
residual, ObsCov-ExpCov (ResCov). If you click onthe ObsCov matrix you can seethe
data matrix in the matrix spreadshed at the bottom of the Projed Manager. This view of
the selected matrix can be turned onand df with the [View] button onthe right of the
manager. As described below these matrices can be aopied to the diploard with ctrl-c.

The matrix spreadshed can show nat only the values of the matrix (and itslabels) but also
the parameter spedfications. If youclick onthe[Valug] button, the parameter spedfications
will be shown. Try this out for the S matrix. This is the matrix of Symmetric arows
(two-heeaded). There aetwo o these, ore going from X to X and oregoingfromY to Y.
The freeparameters are numbered 1and 2in the specs view of the Smatrix. A parameter
numbered zeroisfixed. The A matrix containsthe A symmetric paths (single-healed, causal
arrows) which runfrom column variableto row variable. There aenocausal pathsin this
model, so all of the dements of A are zero.

Click on ExpCov in theright hand panel. To theright is the formula used for this model.
Models built from diagrams currently use one general formulafor the wvariance

ExpCov = F(1-A)*S(1-A) ¥F/

which iswritten using the quadratic operator & in the Mx matrix language: F&((1-A)~&S)
Beginners dorit need to know how these formulae ae used to fit the model. Details are
givenin Chapter 1, a seeMcArdle& Boker (1990 for amore completedescription d this
formulation.

Click onthe ResCov matrix in the right hand panel. Notice how the diagonal elements of
this matrix are very small. They are presented in scientific notation so 1.23e-08 means
.0000000123 and thisindicaes a goodfit of the model to these elements. The model does
nat fit the off-diagonal elements at al well. It predicts no covariance between these
variables, but .55isquite substantial covariancewith this smple size--- asis siown by the
fit statistic of x?=39.55for 1 df. The model shoud be revised.

Resizing the Projed Manager

The Projed Manager window may be resized by pulli ng the side, top, bdtom or corner of
it to anew paosition. It isalso pasdbleto resize the propation d the window that displays
jobs by dragging® the battom of the group anel up or down to anew position. Also, the
[View] buttonwill switch the matrix spreadsheet onand df.

* To drag something, move the mouse painter over it, pressdown the left mouse button, move it to its new
pasition, then release the mouse button.
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Saving Diagrams

All open diagrams are automaticaly saved to file when the jobisrun, bu sometimesit is
useful to savediagramsmanually. Thenull model diagram could besaved dredly (withou
running it) using the following steps:

n Click onthe diagramto seled it
n Click on the save-to-disk icon B (or use the Fil e/Save menu item)
n Enter afilename such asnull.mxd (.mxd isthe default extensionfor MX diagrams,

which will be alded automaticaly if youenter null withou .mxd at the end). Note
that all adive (minimized o displayed) diagram windows are saved to thefile.

Seepage 28for detail s on running and saving scripts.

2.3 Revising aMode

Revising modelsis easy with the graphicd tods.
Adding aCausal Path

Returning to the null path dagram, alinea regresson model can be devised by adding a
causal path from the independent variable, X, to the dependent variable, Y. It may clarify
the path estimates to pu more space between the variables. Click on the open spaceto
de-seled all the variables. Then click onY and move it alittl eto the right (if youwant to
keep it aligned with X, press #ift throughou the operation). Now click onthe arow tool
icon ™™ ontheicon kar. Inthe diagram window, click on X, hdd the mouse button davn
anddragitto Y, andrelease the button. The diagram shoud now have an arrow from X to
Y. Usually we want these arowsto be straight, bu sometimesit is useful to make them
curved, which can be dore by dragging the littl e blue square in the middle.

Youcan naw hit in the diagram window. Enter regress for the Job reme. Note that
if instead you enter null as the jobrame, it will overwrite the previous Mx script and
diagram files. This overwriting approacd is useful when trying to get a model corredly
spedfiedinitially, bu it isbetter to kegp substantively diff erent modelsin diff erent diagram
and script files. Doing so also al ows comparison between them.

The mode fits perfedly, as en by the ML ChiSq of zero in the Results Panel. 1t also has
zero degrees of freedom, becauseit has the same number of parameters asit does observed
statistics. Such amodel isoften cdled ‘saturated’. Click on|OK]to view the new estimates
in the diagram.

Adding aCovariancePath

The procedure to add a avariancepath is esentialy the same asfor adding a causal path,
but you wsethe mvariancedrawing tod instead. Note that there aetwo typesof covariance
path: variance 3 which appeasasalittl eloopfromavariabletoitself, and covariance ™.
Welll add the avariancetype to the diagram.
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First, delete the caisal path by seleding the pointer tod (the white arow [2) click onthe
path once (a blue dot will appea in the midde of the path to show that it is ®leded) and
pressdelete or ctrl-x (cut). Notethat youcan undoamistakewith the undotool “@, andthat
todl-changes can be acomplished via aright mouse button click on a diagram.

Seoond,addthe mvariancepath by seleding the covariancetod ™. Thenclick onX, drag
the panter to Y, and release. The path is automaticdly curved a cetain amourt. The
curvature can beincreased or deaeased by dragging the blue dat in the midd e of the path.
Single-healed arrows can be made to curve in the same way, bu their default foll ows the
conventionthat they arestraight lines, andwerecmmendkeeging themthat way if posgble
(redprocd interadion ketweentwo variablesA-B andB-A requires ome aurvatureto stop
the lines being ontop d ead aher).

Third, hit to rerunthe model. Enter covar as the name of thejoband script. Again
thismodel fits perfedly, with zero degrees of freedom. The parameter estimatesare not all
the same @ the regression model we fitted ealier. These two models may be cdled
‘equivalent’ becaise they always explain the data equally well, and a transformation can
be used to oltain the parameter estimates of one model from the other.

Changing Path Attributes

A variety of charaderistics of paths can be changed and made visible in the diagram with
the Path Inspedor. Doulle-click the mvariance path that we just creaed in the diagram to
bring up the Path Inspedor. Using the Inspedor a path can be fixed, bounad, o equated
to other paths. Confidenceintervalscan berequested, andthedisplay of labels, start values
and other information can be switched on a off. These changes can be made to severa
paths at onceby seleding them all and cheding the* Apply to All Seleded’ boxinthe Path
Inspedor.

Path Inspector E3

L abel
Start Yalue _I Lo ARG
ID-2 | Display Label
Lower Bound :

¥ Dizplay Start Y alue
[F0000 ] Display
High Baund | Db T st
I'IDDDD | Display C.I.
Precizion Digits

|2— | Apply ta All Selected
Estimated Y alue |1

Confidence Interval  |[0, O]

| Fix Thiz Parameter

Cancel | Help |

Figure 2.4 Mx Path Inspedor with parameter F fixed at .2
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Fixing aParameter

For ill ustration, we wil | test the hypothesisthat the covariancebetween X andY isequal to
point two. In the Path Inspedor panel for the mvariance arow chedk (v') “Fix This
Parameter.” Doulle dick the start value field and typein .2to give the fixed value for this
path. One useful way to remember that a path isfixed isto dsplay only the start value and
naot the path label. Unchedk the “Display Label” box and ched the “Display Start Vaue”
box. At the endyour Path Inspedor panel shoud look like Figure 2.4. Click OK andthen
click [Rur]in the diagram window to rerunthe model. Enter anew job rame such as fixed.

If younow look at the Project Manager and cli ck [Statistics], you can seethefit of thismode!
and compareit with the other models 0 far. Note that the Path Inspedor also all ows youto
change the bouncdariesto restrict path estimatesto liein aparticular interval. To constrain
aparameter to be non-negative, we would simply change the lower boundto zero.

Confidencelntervals

For any freeparameter you can request confidenceintervals. Just doule dick onthe path,
and ched the “Calculate CI” andthe “Display CI” boxesin theinspedor. Runthe model
again, but this time just click withou entering a new job reme so that the job
overwrites the existing one in the manager. After al, we ae fitting the same model and
simply cdculating a few more statistics. MXx computes likelihoodbased confidence
intervals which have superior statisticd properties to the more common type based on
derivatives. Chapter 5 describes the method wsed, and Nede & Mill er (1997 discussthe
advantages of using thistype of confidenceinterval. The main dsadvantageisthat they are
relatively slow to compute, so we suggest computing them only when the model isfinally
corredly spedfied.

Equating Paths

MXx usesthe Labels of the paths to dedde whether or not they are mnstrained to be egual.
Toill ustrate, add a latent variable to the diagram, and draw causal paths from it to bah X
and Y, and constrain the two pathsto be equal. First click onthe Circletoo £, and click
onthediagramto addthe drcle. Second,click onthe caisal path tood and add the two paths
from the new latent variable to X and Y. Third, click on ore of the paths and give it the
same label as the other. Finally, to make the mode identified we shoud delete the
covariance (doulde-headed) path between X andY. Onrunningit, we shoud findthe same
perfea fit (x?=0) of the model. Thistime we have the square roat of the cvariance of X
andY as estimates for the two paths.

Note that the latent variable we alded had an variance path with the fixed value of 1.00 on
it. Thisis different from the observed variables, which come with free variance paths,
correspondng to residual error variance.

Having a fixed variance of 1.00 makes our latent variables gandardized by default. Of
course, we could make alatent variable unstandardized by fixing it to some other value, or
(if thereis enough information in the model) estimate its variance & a freeparameter.
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Moving Variables and Paths

Itiseasy to modify the gopearanceof adiagram by moving oneor morevariables. Toseled
avariable, de-select everything by clicking on the selediontoadl ' and then clicking on
some open spacein the diagram. Then click on the one variable, and dag it to its new
paosition. To move several variablestogether, click on ore of them, then pressthe shift key
andclick onancther variable. Alternatively, youcan click onthe badkground d thediagram
and drag aredangle aoundthe variables you wish to seled. When all the variablesto be
moved are seleded, you can drag them to their new location.

24 Extending the M odel

Multiple Groups: Using Cut and Paste

A valuablefeaureof graphicd interfacesisthe ability to rapidly dugdi cate objedsby means
of cut and peste. Here we go through a simple multi-group example --- the dasgcd twin
study --- to ill ustrate these adions.

Fitting the ACE Genetic Model

Structural equation modeling of datafrom twins has been described in detail elsewhere. In
summary, twin pairsarediagnosed aseither Monazygotic (MZ) or Dizygotic (DZ). Thepair
istreded as a cae, andthe MZ pairs are analyzed in a separate groupfrom the DZ. The
structural equation model is configured with threelatent variables which model posgble
effeds of: additive genes (correlated 1.0 in MZ twins and .5in DZ pairs); shared
environment (correlated 1.0in bahtypesof twin pair); andindividual-speafic environment
(uncorrelated between twins). Thisisatwo-groupexample so we will draw two dagrams.

Drawing the MZ Diagram

To begin modeling, open the Mx GUI and click onthe open anew drawingicon[i;]. Then
click the[DataMap] button and the[Open] button and select the fil e ozbmi omz . dat from the
examples subdredory. Seledt only the variable BMI-T1 and click to dropit into the
drawing. Move the data map window out of the way or close it, and start working on the
drawing.

We need to add A1, C1 and E1 latent variables. Click onthe latent variableicon i} and
draw three d¢rclesabovethe BMI-T1 variable. Relabel thevariablestoread A1, Cl andE1
by doule dicking inside the drcles andtyping in the new text.

Next we need to add the caisal pathsfrom A1, C1, and E1 to BMI-T1. Click onthe caisal
arrow icon ™™ andclick and drag from A1to BMI-T1, andrelesse. Do the samefor C1to
BMI-T1and E1to BMI-T1. Mx automaticdly labels arrows and variables for us, but we
want to use spedfic names for our paths: a, c and e. Therefore, we doulde dick oneat
path in turn and rename it in the label field of the Path Inspedor. Careis needed herel

® Clicking the right mouse button in a diagram offers an alternative, menu-driven way to change the

drawing tod
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Depending onthe order in which the latent variables were drawn, there may already be a
path cdled a, c or e on ore of the latent variables. Relabelli ng the caisal paths may have
inadvertently caused an equality constraint that we dont want. Relabel any of the latent

variablevariancepathsas necessary to makethemdifferent froma, cande. Finally, because
we aegoingtomode indvidual-spedficvariationwithewe carremovethevariancepath ]

onBMI-T1. Click insideit so that its blue seled button appeas and ht delete or ctrl-x.

We now have amodel for Twin 1,and we nedl to replicae it for the Twin 2. Either press
ctrl-a or go to the Edit menu and click Select All. Press ctrl-c for copy and ctrl-v for paste
(or usetheicons E*fl and [k or the Edit menu equivalents) and you have anew copy of the
model for an individual. Use the mouseto drag it to theright of the existing model. You
may haveto resize the window to give yourself spacefor this. Alternatively, youcan zoom
out the drawing with the @, button (seebelow).

A very important step comes next. We have dugicated the model for twin 1--- both the A,
C and E part andthe phenotype BMI-T1. We do nd want to model the cvariance between
BMI-T1andBMI-T1. When we dupicaed themode for twin 1,the new BMI-T1 boxwas
blad rather than blue. Thisisbecaiseit isnot mapped to daa. To map it, we seled the
variable BMI-T1 (and orly this variable) in the diagram. Then hit , click on
BMI-T2inthe variable list, and then[Map]. The variable in the diagram turns blue and the
label isrevised to say BMI-T2. MX now knows what datawe ae analyzing.

To complete the model for MZ twins, we need to dotwo things. First, change the labels of
the latent variables causing BMI-T2to A2, C2 and E2 by doule dicking onthe drclesand
typing in the new names. This gep isfor cosmetic purpases - Mx will till fit the corred
model even if the latent variables have incorred names. Second,we must spedfy that the
covariances between A1 and A2 and between C1 and C2 are fixed at one. Click on the
covariancepathtod ™. Click onA1l, dagto A2 andrelease. Do the samefor C1and C2.
Note that if you drag from right to left, the arows curve downwards rather than upwards.
The curvature can be ajusted by clicking on the arow and dagging the blue seledion
buttonin the midde.

Y ou must now fix the A1-A2 and C1-C2 covariances to ore. Click on each path in turn,
chedk the “Fix this parameter” box, make the starting value 1, and seled “Display Starting
Value”. At this dage the diagram shoud look something like Figure 2.5. It would be
possble to runthis model, bu the parameters a and ¢ are cnfounded when we have only
MZ twins. To identify the model we must add the DZ group.

Drawing the DZ Diagram

Adding the DZ twin groupiseasy. Click onthe MZ diagram and ht ctrl-a (seled all) and
ctrl-c (copy). Then pressthe new drawingicon[§;]. Click onthe new diagram, pressctrl-v
(paste) andthe MZ model iscopied into the new drawing window. Two stepsremain. First
click onthe mvariance between Al and A2 and change its darting value to .5 - the value
spedfied by genetic theory. Second,map the observed variablesto data. Hit the[DataMap)|
buttonand seled thefile ozbmiodz.dat. Highlight BMI-T1 andBMI-T2inthevariablelist
and click [AutoMap]. Because the variable labelsin the ozbmiodz .dat file aethe same &
the variable labelsin the ozbmiomz . dat fil e, the automap function maps the variables from
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the li st to the diagram corredly.

& MZ Twins [_ O[]
Run | Parse | ToScript | DataMapl Managell

1.00 1.00 j

BMI-T1 BMI-T2

Figure 2.5 Starting values for an ACE twin model for MZ twins

Fitting the Model

Finally, run the model by clicking the button in either diagram. Enter ace as the
filename for the script and dagrams. The Results Panel shoud report afit of 2.3781and
the estimatesin the diagram shoud look like those in Figure 2.6.

Run | Parse | ToScript | DalaMapl Managerl

1.00 1.00 =

BMI-T1 BMI-T2

Appears Ok ML ChiSg
Group Fit: 0.200742
Fits 2.378 (0.000, 7.163)
Probability 0.498
AlG-3.622 (6.000, 1.163)
RMSEA 0.017 (0.000, 0.047)
Degrees of freedorn 3
Free pararneters 3
Obsetved Statistics 6
Constraints 0

< | oy

-

Figure 2.6 Parameter estimates from fitting the ACE model to MZ and DZ twin data

Notethat in thisexample, thereweretwo MX errorsinthe eror window. These arorswarn
usthat although we had suppied bah means and covariances asdata(in the .dat fil es), orly
a model for covariances was aupdied. See below on page 22 for details on hav to
graphicadly model means.
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Seleding Different Variablesfor Analysis

To unmap variables, youmust seled one and orly one variable, go to the datamap window,
seleat only that variablein thelist, and then pressthe[Unmap] button. Y ou can then remap
thevariablein your diagramto anather variablein theli st by seleding thevariableinthelist

and pressng[Map].

The[AutoMap] feaure lets you automaticaly map boxes to variablesin a dataset by name.
If you have aseries of unmapped boxesin your diagram, andaseries of unmapped variables
in your dataset, then pressng[AutoMap] will map them by name. Thisisvery useful when
you have run an analysis on ore dataset, then wish to fit the same model to a different
dataset. It also comesin handy when you have multiple groups, with variables with the
same names being analyzed in dfferent groups, as we did with the twin study example
above.

Modeling Means

The Mx GUI alows the user to draw and fit models to means as well as to covariances.
Thisis smplified with a new type of variable in a path dagram, the triangle. Let's add
means to the twin model we developed ealier. If you do nd still have the MZ and DZ
drawings open, load them from the fil e ace .mxd.

Seled theMZ diagram and click onthetriangletool ™. Point the mouse somewhere below
theredangles and click onceto crede atriangle. Then usethe causal path too *™ to draw
paths fromthe triangle to the variables BMI-T1 and BMI-T2. Do the same thing in the DZ
group. Mx hasautomaticaly set new, freeparameters onthe paths and we ca runthejob.

The output for thisjob shoud give exadly the same goodressof-fit to the model aswe had
before, because the model for the means is saturated. It has one free parameter for eat
mean. Let'stest the hypothesisthat Twin 1meansare equal to Twin 2means. GototheMZ
diagram and make the label onthe path from the triangle to BMI-T1 the same & the label
fromthetriangleto BMI-T2. Dothesameinthe DZ diagram (keep thelabel sdiff erent from
those onthe paths from the triangles in the MZ diagram). Runthejobagain, andgiveit a
new name, like tleqt?. Inthe Projed Manager window we seethat the x? (F:) has only
dightly increased from 2.38to 2.55- an increase of lessthan .2 for two degrees of
freedom, whichisnonsignificant. Thisindicatesthat the hypothesisthat the means of twin
1l andtwin 2are gjual isnot rejeded.

To continue the example we can test whether MZ means are equal to DZ means. Thisis
dore by going badk to the DZ diagram (ctrl-tab is a shortcut way to switch between Mx
windows) and changing the paths from the triangle so that they have the samelabel asthose
inthe MZ group. Runthe model again and cdl it mzeqdz. The x? of 6.24 tesincreased by
about 3.7 over the tleqt? model, for one degreeof freedom, which isnat significant at the
.05 level. The hypathesis that the MZ means equal the DZ means is not rejeded. The
sample sizeshere (637MZ and 380DZ pairs) are quite large, so the chancethat thisresult
isatype Il error (failure to deted atrue dfed) is gnal. The observed MZ-DZ mean
diff erencemust be small relative to the variance of body massindex in these data. We can
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ched this result in the Projed Manager window. Seled the tleqt? job and examine the
predicted MZ and DZ mean in the ExpMean matrix for the MZ groupand compare it with
the ExpMean matrix in the DZ group ly aternately seleding the MZ and DZ groups. The
DZ meanis.45andthe MZ meanis.34whichisapproximately .11 d astandard deviation
different because the expeded variance (see ExpCov) is abou .97 for this model. The
standard error of the difference between two means is given by the formula

/SDS/n,+SDZIn,. Thisformulaisn't entirely appropriate for the caein hand kecaise we
have correlated olservations making up the two samples. If we pretend that they are
uncorrel ated then the standard error would be gpproximately v1/760+ 1/1274-.0458. If we
pretend that the twins are perfealy correl ated then we would have v1/380+ 1/637=.0648.
The first estimate of the standard error would give a z-score for the difference of
.11/.0458-2.40 (significant at .05 level), whereas the second would give 1.70 (not
significant at .05level). Thetruth lies somewherein between, and a very nice property of
the maximum i keli hoodtestingisthat it handlesthese cmplicationswith esse and rovides
appropriate tests for bath independent and correlated observations. The x? diff erencetest
above showed that the diff erencewas nat quite significant at the .05level. Better still, we
can oltain confidenceintervals onthis y? test and onthe parameter estimate itself.

The Mx Model for Means

When computing a predicted mean, Mx traces the paths from an olserved variable
(redangle) to a mean variable (triangle) and multi plies the paths together. If there ae
several triangles or pathways from a triangle to an observed variable, it sums their
contributions to the mean. Notethat, urlike covariances, thereisno changing of diredion
when traversing paths, and orly the single-headed arrows are used. The matrix formulaMx
uses to compute the predicted means (shown in ExpMean in the Projed Manager) is

ExpMean = F(1-A) 1M U

where U is a unit matrix and M contains the paths from the triangles to the drcles and
squares.

2.5 Output Options
Zooming in and out

To zoom into a part of a diagram, click on the zoom in tool then click on the diagram
workspace ad dag aredangle aoundthe part of the figure that you wish to enlarge.

To zoom out, seledt the zoom out todl & click onthe di agram and drag asgquare insideit.
Note that this feaure works propartionately, so that it is posgble to get a very tiny and
unreadable figure if you drag avery small square by mistake.

Sometimes zooming operations can cause adiagram to become so big or small that it
disappeas altogether. A click on the zoom undo buton & will shrink or expand the
diagram to roughly fit the window size.
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Copying Matricesto the Clipboard

A matrix may be mpied to the Windows clipbaard by seleding it in theright hand panel of
the Projed Manager window, and pressng ctrl-c or the mpy icon t+fl. The contents of the
windows clipbcard may then be pasted into wordprocessng or spreadshed appli caions,
usually by pressng ctrl-v or clicking the gopropriate paste tod or menuitem. By default,
the matrices are copied with a tab charader between eat column, and a cariage return
charader at the end d ead row --- suitable for many appli caions. These defaults may be
changed using PreferencelM atrix Options. For example, to oltain ouput formatted suitable
for aLaTeX table, the user-defined delimiters shoud be changed to & for columns and \\
for rows. Note dso that the number of dedmal places may be dhanged. Diagrams may be
copied to the dipbaard as described below.

Comparing Models

When several models have been fitted to the same data, it is pasgble to generate atable of
parameter estimatesandgoodressof-fit statisticsautomaticaly. Themenuitem Output|Job
Compare will build afile of comparisons, which you can view with atext editor. Thefirst
column of thisfile cmntainsalist of al the pathsin the model, foll owed by thefit statistics.
The remaining columns are the estimates and fit statistics fourd for all the modelsin the
projed manager. This table may then be copied into ather software for puldicaion. The
format of the table depends on the PreferencgM atrix Options in the same way as copying
matrices to the dipboard.

To get only a few of the models in the manager, simply delete the jobs that shoud be
excluded from the amparison, by seleding them and htting the Projea Manager
button.

Setting Job Options

Mx uses a default set of job ofions sitable for most general purpose model-fitting, but
there may be times when aher settings are desired. The Job Option panel (menu
Preference-Job Option) is used to change these settings. Figure 2.7 shows the default
settings.

Job Option Panel

| Output Statizticz

5 HTMI % TEXT | Mull Model | Mone > Auto > Manual
Decimals |4 Mull ChiSg IEI rull Cf |EI

Wit 80 | Power Calculation
Debug [0 Alpha [0 Dt [
MpSol |EI

| Confidence Interval an Fit % IEID

Ind. Likelihood File

I | Standardizi | Restar Df Adjust IEI

Cancel | Help | Dptimizatinnl
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Figure 2.7 The Job Option Panel. Text output with four dedmal places of predsion
and 80columnwidth will begenerated. Debug statisticsandindividual pedigreelikelihood
statistics will not be generated. Confidence intervals (90%) on the fit statistics will be
computed, and ndl model and paver statistics will not. Parameter estimates will not be
standardized. New MX jobs creded from diagramswill be started from the starting values
in the diagram, na the aurrent estimates.

Text Output

Having run an Mx job, you may wish to view the regular text output. If so, ssimply hit the
output tool [Z1. TheMx GUI comeswith ashareware eitor cal ed notebook . exe whichyou
can seled. It alows you to edit and view much larger files than Microsoft Windows
Notepad editor. Youcanseled an alternativetext viewer viaPreferences (thoughwedo nd
recommend Microsoft Notepad because of itsinability to edit large fil es).

HTML Output

Flexview is supdied with Mx to simplify the viewing of HTML output. In arder to useit,
youmust first tell Mx to produce HTML output when it runs, before runring thejob. This
you do via the Preferences-Job Option menu item. Netscape 4.5 could be dhosen, bu
ealier versions gart upslowly every time. Under Internet Explorer 4.0,chocsing explorer
as the html viewer (typicdly foundin c:\windows\explorer.exe) works quite well. For
large output fil es, Flexview does nat work well andtext output or anather viewer shoud be
used. Flexview is shareware and you shoud register it if you deddeto useit regularly.

HTML and Text Appearance
Y ou can change the number of dedmal places and the width of Mx output by entering
different values in the deamals and width fields.

Debug Output

Auxili ary output about optimization may be printed to the file nagdump . out by requesting
NpSol values greaer than 0 (upto 30. Debug output will go to thisfile aswell if Debug
isset to 1.Debug prints the values of the parameter estimates and the fit functionfor eath
groupfor every iteration duing optimization. Such filescan bebaoth large andslow towrite
to disk, so we recommend ony using these feduresin an emergency.

Individual Likelihood Files
If you are using raw data, it is posdble to save the individual li kelihoodstatistics (see#p.
72) to afile by entering afilename in the text box “Ind. LikelihoodFile”.

Additional Statistical Output

Certain ‘comparative' fit indices require the computation d the fit of a Null model. By
default the null model has free parameters for the variances and zero covariances. This
model will be fitted automaticdly by Mx and the statistics will be computed if the Null
model radio butonis st to Auto. Sometimes, a different null model than the default is
required; this model shoud be fitted by the user and the x? and degrees of freedom nated.
These statistics would then be entered by first seleding the Manual radio buton and then
entering valuesin the Null ChiSgandNull Df fields. The alditional statisticswill bevisible
in the Results Panel.
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Power Calculation

Tocomputestatisticd power, the “Power Calculation” chedkboxshoud be chedked, andthe
alpha-level and degreesof freedomshoud be entered. Seethe#p. 62for information on haev
to fit modelsthat assess satisticd power.

Confidencelntervalson Fit

By default the Mx GUI requests 90% confidenceintervalson fit. If an alternativeinterval
isrequired, it can be entered in thistext field. If Cl'sare not required, then the dhedk box
can be deaed. Note that this is not the same & confidence intervals on the parameter
estimates, which must be requested for paths using the Path Inspedor.

Standardize

By default, Mx producesunstandardized parameter estimates. Thisdefault may be cdianged
by seleding the “Standardize” chedk box. The graphicd interfacethen generates diff erent
Mx scripts which include nonlinea constraint groups to remove the variance of the
variables. This box shoud be diedked when working with correlation matrices to oltain
corred confidenceintervals onthe parameters. Correlation matrices shoud be entered in
dat fileswith akMatrix nat aCMatrix command.

Restart

The Restart chedk box changes the scripts generated from diagrams. Instead of using the
starting values of paths, the aurrent estimates are used instead. If amodel has been fitted
before, andisonly slightly changed, e.g. by fixing one parameter, then re-runnng from the
existing estimates may be much faster than starting from the starting values again.

Optimization Options

Mx uses certain default values of the optimization parameters which have proven to be
reliable under avariety of condtions. Occasionally it isnecessary to use diff erent settings;
these technicd options are described on p.95. For the most part, these options shoud na
be dhanged.

If optimization ends with the message “Posgbly Failed” you cantry to restart optimization
automaticaly with Randam Start at -2 for two attempts to solve the problem. If youwant
to try randamized starting values for amodel, set it to a positive value, bu be sure to pu
sensible boundries onall your freeparameters.

Printing

To print diagrams, cli ck the printer icon Ifllor usethe File menuandseled Print. Notethat
the part of the diagram visible in the window is printed. Print can also be used to print
scriptsfrom the editor window. The script font can be dhanged with the Preferences|Script
fonts menu item.

Printed output can be previewed withtheFil ePrint preview menuitemor the preview tod
onthetoadbar. Thisfedureisagoodway to savetime and paper. Somefeauresof printing,
like printing the object handles on seleded oljeds, may be unexpeded, so print preview is
recommended.
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Improving Print Quality
There arevariouswaysto improve the visual appeaanceof the diagrams. Generally, these
areworth dang for final copy, such as printing for pulicaion a to make slidesfor atalk.

First, you can move the path |abel s away from the paths by clicking onthem and dragging
themto anew locaion. Occasionaly it may be difficult to seled the label becaise another
objed, such as the path, is ®leded instead. If so, try clicking slightly to the right of the
label. Seoond,in Preferences you can choose font size and appeaance, separately for the
pathsandthevariables. Alsoin Preferencesyoucan chocselinethickness which currently
affeds bath the paths and the lines aroundthe variables. To addimpada for color printing,
you can change the alor of the badkgroundandforegroundcomporents (paths, boxes, text
etc.) in adiagram. Third, remember that the anourt of information dsplayed abou a path
- labels, estimates, confidence intervals, boundries and so on - can be dianged for
individual paths with the Path Inspedor. Revising the gpeaance of many paths
simultaneously can be dore by seleding several paths and chedking the “apply to all” box
in the Path Inspedor.

The variance arows ometimes become obscured by paths going to and from variables.
They may be dragged to ore of eight positions aroundcircles or squares.

Aligning Variables and Paths The grid tool ¥ adds a grid to the arrently adive
drawing. The mlor andsize of thisgrid can be changed viathe Preferences|Grid menuitem.
It isthen smpleto align circles and squaresto this grid by moving them. Much faster isto
use the snap to grid feaure FH, which automatical y dignsvariables onthe grid. Objeds
will move only to another grid place so moving avariable asmall distanceoften won't have
any effed at all. Moving it agreaer distancewill alow it to snap to anew grid pasition.
The granularity or size of the grid can be dhanged using Preferences|Grid size.

Pathslabelsare given adefault central pasition based onthelength and dredion o the path
they arelabeling. If apathislonger inthe verticd axisthan the horizontal, itslabel will be
centered verticdly. Conversaly, if itislonger inthehorizontal axisitslabel will be centered
harizontally. By moving objedsfurther away it is ©metimespaossbleto automaticdly aign
relevant path labels; thisisthe preferred way to align path labels. If necessary itispossble
tomove eatindividual label away fromitsdefault position by dragging it to anew position
- but this shoud be used as a last resort. We recommend that print preview (Fil e-Print
Preview or be used to chedk the visual appeaanceof afigure.

Exporting Diagramsto ather Applications

Mx GUI usesthe standard Windowscli pbcard to export diagramsto ather applicaions. To
export adiagram, left-click onceonthe bad<ground d the diagram, and then pressctrl-c or
pressthe opy iconf*. Thiscopiesthefiguretothe dipboard. Open ancther application,
such as Wordperfed, MS Word, Harvard Graphics or Visio and pgessctrl-v (or seled the
paste menucommand a cli ck the pasteicon[3k). Partial figures may be mpied inthe same
way, by seleding only part of the diagram before pressng ctrl-c.

Diagrams may also be printed to a postscript file, if you have apaostscript printer driver
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installed. From the printer control menu, seled encgpsulated paostscript as the postscript
option, and ched the 'Print to fil € box.

Files and Filename Extensions

Mx uses and creaes alot of different files, with spedfic filename extensions attached to
them. To save disk space some of them may be deleted. Table 2.2lists the fil enames and
their contents, and indicates whether they may be safely deleted. Typicdly one does not
want to delete data or useful drawing or script fil es. Malfunctioning scripts might be better
deleted. At thistime .prj files canna be read bad into the GUI.

Table2.2 Summary of filename extensions used by Mx

File extension Contents Delete

.dat MX data Probably not

.mx Input script Probably not

.mxd Mx path dagram Probably not

.mxo Text output If nolonger needed
.htm Hypertext output If nolonger needed
.mx| Frontend ouput Yes

.prj MX projed Probably not

.exe Exeautable Mx program No

.l Dynamic link library No

2.6 Running Jdbs
Running Scripts

Many previous users of Mx and those working with nonstandard models (such as those
involving constraints or speadal fit functions) will want to be aleto runsuch models. The
Mx GUI has been designed to make working with scripts efficient. It lets you open script
fil es, edit them, andview output in either the manager or text or hypertext (HTML) formats.
In addition, if there ae arorsin the script, it will display them andwith a dick of abutton
will take youto the alitor window with the problem text highli ghted.

Let'stakean example script. Start the GUI and cli ck the openicon 2. Choase twinpar . mx
and hit inthe alitor window. The Mx statistica engine runsthejobin the bacground
andthen deliversthe output to the manager. We dont nead to bather with the detail s of this
particular job,it'sjust an example to show how several groupsappea. Youcan easily look
at the matrices in the different groups by seleding the groupin the midde panel and the
matrix in the right hand panel.

As we run more jobs, perhaps editing the script or seleding other scripts, the Projed
Manager fill s up with the new jobs. Thefit statistics from all jobs become visible in the
bottom panel when the[Statistics| buttonis pressed.
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Errorsin Scripts

To help debugging of Mx scripts, the line and column o the inpu file where an error
occurred is automaticaly sent to the GUI to speed up debugging of scripts. Let's ehow
this works with an example.

Edit adummy script by hitti ng the new icon ‘[3:. Typein the foll owing:
Title

Data Ngroups=1

Oops a mistake

Begin Matrices;

Hit and seewhat happens. Click the left mouse button onthe eror, and nde how the
editor window shows the Oopstext highlighted. Youare now in agood paitionto fix the
problem, if you are famili ar with the script language. A full description d the languageis
givenin chapters 3-5 andexamplesarein chapter 6. CoursesonMx arerun quteregularly;
consult http://views.vcu.edu/mx.

Sometimesit ishelpful tolook at thetext or HTML output fil eto seefull detail sof theerror.
Click theright mouse button onthe aror to bring upthe output file. With HTML, the eror
isautomaticdly presented, with Text output it is necessary to scroll to the end d thefile.

Using Networked Unix Workstations

Performanceand Multi-Platform Environments

The difference in performance between high-end MS windows computers and Unix
workstations is narrowing al thetime. Indeed, the same hardware can be used for either
Unix or MSwindows it might be agued that it has disappeaed. However, it isnot very
cost-eff edive to suppy every student and faaulty member with the latest and fastest PC.
Many institutions gill use amixed platform computing facility in which there ae powerful
Unix serversavail ablefor general use, alongwith PC computersthat have networked access
to these servers. The Unix madines often have large anourts of memory, high-speed disk
accessand may offer much faster CPU than is avail able for PC's. To fadlit ate the use of
these remote machines, Mx GUI has a networking componrent which all ows the user to
seled aremote Unix host to run Mx scripts.

The Host Options Panel

Figure 2.8 shows the Host Options Panel set for locd (on the PC on which Mx GUI is
running; left panel) and remote processng (right panel). By uncheding the locd host
chedkbox, the user can enter the IP addressof the Unix machine and their username and
passvord. MX is nat (yet) a standard part of the Unix operating system, so it must be
installed onthe host in gquestion kefore remote accesto it will work. The files and
instructions for installation are available & http://www.vipbg.vcu.edu/mxgui/unix.html.
As auser, you shoud make sure that your path onthe Unix hast includes the diredory in
which Mx-Unix has been install ed, which isusually /usr/local/bin.
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Figure 2.8 Host Options Panel set for locd PC use (left) and remote Unix use (right).

Running a Jdo Remotely

The foll owing steps are required to run ajob remotely:

n Make sure you have an acournt onaUnix host which has the Mx server install ed
n Go to the Host Options panel (Preferences-Host Options menu) and enter the
madchine name, username and password

Click Runin your diagram or script window

Enter any commands to change directory® onthe remote host and click ‘ Exeaute’
Click ‘Run Mx’

Click ‘RunMx’ againif it says Posgble Incompatible Remote Engine, Install New
Remote Engine (this error often occurs puriously)

n Wait for the jobto runandto be transferred bad to the GUI.

Transferring Filesto Unix Hosts

Running Mx GUI onaremote host has afew additional considerations. Foremost isthe use
of files, espeaaly the File= subcommand wsed in MX scripts. Any file mentioned in a
Fi1e=subcommand must betransferred to the remote Unix hast (using e.g., ftp) in order for
the Unix host to accessit. For this reason, it is best not to pu pathnames in the File=
subcommands, becaise of inconsistencies between the Unix fil enaming system and the
windows fil enaming system. It would become messy if the only placeused for Mx files
wastheroat diredory onthe Unix host, so there aefadliti esfor changing diredory onthe
remote hast prior to runnng scriptsthere. Inthe Host Commandwindow, the user can enter
aUnix command such as cd mymxfiles to change diredory, before hitti ng the |Exeaute).

One exception to the neead to transfer fil es to the remote host is the .dat file spedfied in a
diagram command. This file will be included in the script and automaticaly
transferred to the Unix haost. For thisreason, it can bebest to keegp al thedatain the .dat file
itself and nd to use the File= subcommand at all. In some drcumstances this may be
inefficient, espedally if the network conredionis dow, asall the datawill be transferred
with the job --- this applies espedally to large raw data files or large asymptotic weight
matrices. If several jobsareto berun using the same dataset, it may be more dficient to ftp
these fil es to the Unix hast and return to using File= in the script.

® On Sun systems it may be necessary to change the shell with the mmand ksh to all ow more than ore

jobto berun per direcory
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Increasing Backend Memory

The default amourt of memory avail able for the Mx engine to store data, perform matrix
algebraand opimizationis 100,000wordsfor the PC version. Thiscan beincreased when
necessry by changing the value in the Run Options panel (Figure2.8). The Unix versions
have a default of one milli onwords of memory and at present this cannd be dtered. If a
larger Unix version is required, pdease emall nede@vipbg.vcu.edu for a spedal build.
Sometimes more dficient re-spedfication d aproblem can freeup workspace

2.7 Advanced Features

In this sedion we mnsider some of the more alvanced feaures of Mx GUI, including
adding nonlinea constraintsto dagrams, and the use of continuows moderator variables.

Adding Non-linear Constraintsto Diagrams

Inealier sedionswesaw that it is graightforward to make one path equal another by giving
it the same name. Itisalso smpleto forcethe estimate of apath to liewithin certain limits
by doube-clicking the path and entering boundary constraints. Much less smple is the
additionof nonlinea constraintswhich at thistime can bedone only by diredly editing the
script.

IN Cco SI VO PC BD PA OA

o o O O O O O O

0.23 0.27 0.27 0.10 0.26 0.37 0.42 0.43

Appears OK ML ChiSq
Group Fit: 90.4152
Fits 90.415 (45.506, 104.864)
Probability 0.000
AIC 52.415 (7.506, 66.864)
RMSEA 0.108 (0.065, 0.119)
Degrees of freedom 19
Free narame ters 18

Figure 2.9 Higher Order Fador Model with nanlinear constraints imposed such that
the variances of F1 and F2 are constrained to equal 1.0(.24+.87 =1.0)

Figure 2.9shows adiagram with ahigher-order latent fador (H) andtwo first-order fadors
F1 and F2. Suppacse that we wish to constrain the variance of the second-order fadors to
equal unity. One simpleway to dothismight beto eliminate H andall ow thefadors F1 and
F2 to correlate, and give them error comporentsfixed to unity. However, suppcse that the
pathsfrom H were of substantiveinterest themselves, perhapsbecaise of reportsfrom other
investigations. Thisexampleisfor ill ustration, so well doit the hard way with nonlinea
constraints. Thedata comefromHorn & McArdle (1992 and concern the sub-scdes of the
WAIS intelli gencetest, taken by subjeds aged between 16and 28yeasof age. The tests
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may be broadly caegorized as verbal (IN: Information; CO: Comprehension; Sl:
Simil arities; and VO: Vocabulary) or spatial (PC: Picture Completion; BD: Block Design;
PA: Picture Arrangement; and OA: Objed Arrangement).

The foll owing steps are necessary:

1. Draw diagram

2. Build script from diagram (To Script)

3. Edit script file:
a Increase NGroups by one to allow for new constraint group
b. Edit in the constraint group wing Mx script language

4, Runthe job fromthe script

5. View parameter estimatesin the diagram

Themost difficult part of the sequenceis of course 3(b), where knowledge of the Mx script
language and the way that the Mx GUI creates <riptsisrequired. We now give abrief
description d the gpproadch used to implement the cnstraints for this example.

Because the matrix expresson for the mvariances of al the variables (bath latent and
observed) is(1-A ) * S* (I-A™)' we can compute this by equating matrices to those of the
first group,and entering thismatrix formulain a Algebrasedion. Moretricky isto extrad
the relevant matrix elements correspondng to the variances of F1 and F2 This can be
achieved usingthe\part(A,B) functionwhich partitions matrix A acerding to therowsand
columns spedfiedinB. Matrix B must have four elements and these identify two corners of
the sub-matrix, so setting the elements of B to 9,9,10,10will extrad the 2x2 matrix from
element 9,9to element 10,10. We know that thisisin fad the sub-matrix that we need by
looking at the variable labels for matrix Sin group 1. Variables F1 and F2 appea asthe
ninth andtenth elements of theli st of labels. A secondmatrix algebrastatement can be used
to crede the sub-matrix and daceit in matrix T.

It remainsto equate the diagonal elementsof T to unity. Thiswe can do wsing the d2v matrix
function which extrads the diagonal of amatrix to avedor. It isthen simple to request a
constraint between this vedor and avedor in which every element is 1.0,as shown in the
foll owing lines of MX script:

Title Add constraint to variances of F1 and F2
Constraint Ni=2
Begin Matrices = Group 1
P Full 14 ! for the partitioning part
UUnit 12! Two 1.0 elements to equate to variances
End Matrices
! deduce from labels for S above that F1 and F2 are variables 9 and 10
Matrix P 9 9 10 10 ! to be used for partitioning

Begin Algebra;

R= (I-A)~&S:; ! computes covariance of all variables, latent and observed
T= \part(R,P);! computes the sub-matrix of R from element 9,9 to 10,10
End Algebra;
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Constraint \d2v(T) = U ; ! constrains the diagonal elements to equal U

Option df=-1

! T add this df adjustment because really and truly all we have done

! is put the same constraint in twice, because the paths from H to F1 and
! from H to F2 are equal. A more efficient way would be to only constrain
! one of the variances (F1 or F2) but this is an illustration.

End

Theconstraint syntax above involvesthe= operator becaisewewant an equality constraint.
For norinea boundxry constraints one muld usethe < or > symbadsinstead.

Oncethe script has been modified, care must be taken na to overwrite it with a new script
from the diagram. If the diagram is modified, it is necessary to go through steps 2-4 again
torunit, otherwisethe onstraint groupwill | ost. However, these steps are much easier the
secndtime becaise at and peste can be used to get the wnstraint groupfrom the ealier
script.

A final remark concerns the use of option df=-1. By default, Mx will add ore observed
statistic for eadh nonlinea constraint imposed. Thisaddition d astatistic is analogousto
the lossof a freeparameter when two parameters are linealy constrained (equated) MXx
asumes that whatever nonlinea constraints you are using eff edively reduces the number
of parameters (or equivalently increased the number of observed statistics) inthe sameway.
In this example we did a silly thing, because bath constraints were identicd, so we redly
gained no information by adding the second constraint. The df=-1 option correds this
silli ness

Moderator Variables; Observed Variables as Paths

Aninteresting feaure of Mx isthat it allowsthe spedficaion d modelsthat can dffer for
every subjed inthe sample. In some sense, thisisthe extreme case of multi ple groups, and
it has omeinteresting statisticd posshiliti es. For one, thistype of modeling is equivalent
to Hierarchicd Linea Modeling (HLM) as gedfied by Bryk and Raudenbush (1992 and
others. Thisasped of Mx has nat recéved much attention, bu perhaps that will change
now that the graphicd interfacefadlit ates the spedficaion d some of these models.

We will ill ustrate the method with an uninspiring example of interadiontermsin linea
regresson. This example has the alvantage that we know the answer and can compare it
with results from standard methods. The standard model of linea regresson with
interadion that we shall useis

y = bx +bx,+....bx X, +e

where b; istheinteradion parameter of interest. Inapath dagram, it isposdgbleto model
these data by pre-computing x; xx, and fitting a model li ke the one shown in Figure 2.10.
An dternative gproach would be to alow two pathways from x; to y, one having the
parameter b;, andthe other going through two paths, onewith the parameter b, andthe other
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having the individual's data for x, onit. Thus, by path analysis, the model for y would be
equivalent to the model inthe equation. The questionis, hon dowe get individual-spedfic
data onto the pathsin an Mx model ?

covl3

varx2
varxl covl2 O cov23 varx1x2

a2

X1 X2 X1*X2

x bz%
\ Y.

Y ODe

Figure 2.10  Linea Regressonwith Interadion Model with two independent variables,
X1 and X2 andtheir product X1*X2 and ore dependent variable.

Raw data is essential for fitting these ‘data-spedfic’ models. As described in the Mx
manual, two basic forms of raw data may be read by Mx: variable length (‘VL’), and
redangular (‘ Red’) . Redangular isgenerally much easier togenerate, andexcept for spedal
cases such as many siblings in afamily or very serious missngnessit iseasier to use. A
.dat file with redangular data might look like this:

1
! Rectangular data file created by Jane Datapro on Sept 31 1997
! using program /home/janedata/mxstuff/makemx.sas

1

Data NInput=4 NObservations=0

Labels X1 X2 X2d Y

Rectangular

1.234 2.345 2.345 3.456

4.321 3.210 3.210 2.109

End Rectangular

The ... indicae the remaining records of the dataset. Note the valuable mwmments at the
start of thefile - very useful for later retradng one's deps. The spedal feaure of this data
fileisthat the secondvariable (Mod) hasbeenincluded twice(Mod2isidenticd to Modfor
all cases). We aegoingto makeuse of thisvariabletwice- once aanindependent variable,
and orce & a moderator variable. In alinea regresson we normally remove the main
effeds of avariable before testing for the presence of interadion, rence the dugication.
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Again we should remember that this Smple exampleis for ill ustration, and that the same
thing could be adieved more eail y with standard software. Themore complex possbiliti es
that such modeling encompasses could nd be eaily spedfied.

Closeany diagramsthat you have open and start anew diagram [, hit and open
the norlin.dat file from the examples diredory. Highlight the X1, X2 and Y variables and
click[New]. Then draw a cvariancepath between X1 and X2 and causal paths from these
variablesto Y. Then addalatent variable M by drawing acircle and daw pathsfrom X1 to
it andfromit to Y. Seled the path from the dummy variable to Y and then hit
again. Highlight the remaining unmapped variable, X2d and click [Map]. Thisvariable has
now been mapped to the path from M to Y. The path shoud be the mapped variable wlor
(blue by default) and there shoud be adiamondsurroundng the path label to indicate that
it ismapped to avariable. Thetotal effed from X1 to Y now contains bath the linea and
the interadionterms. Finally add means to the model; for raw data we must always have
amode for the means. In the end your figure shoud look something like (topdogicdly
equivalent to) Figure2.11.

0.87

Figure 2.11 Linea Regression with Interadion; a moderated regresson approad.
Variables X1 and X1d are identicd in the dataset. Each individual has a
diff erent model becaise they have diff erent values of X1d.

the model and ke patient; fitting modelsof thistypeiscomputationally intensive. One
spedal thingto nde @ou the printed output andtheresultsonthe diagramisthat the value
onthe X2d path isthat of the last casein thefile. Theresults sroud closely approximate
the values used for simulation, ramely b,=.5; b,=.4; b,=.3; and e=.36 More interesting
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models would involve moderation d the dfeds of latent variables, and they may be
spedfied in exadly the same way.
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Outlineof M x Scriptsand Datal nput

What you will find in thischapter

n Genera rulesfor job structure and syntax
n Detailson hav to read data and seled variables for analysis

Preparing I nput Scripts

Comments, Commands and Numeric I nput

AN

Inpu files doud be prepared with the text editor of your choice If you wse a
wordprocesr (such as Word Perfed or MS Word) theinpu fil e shoud be saved in DOS
text (ASCII) format.

Y ou may put comments anywhere in your inpu file using the dharader "'
The MXx command pocesor ignores:

» All charadersfollowing ! onany line

» Blanklines

»  Anything after column 1200

Linesin Mx scripts may be upto 1200charaderslong on most systems; the IBM RS6000
compiler has an upger limit of 500 charaders, which isthe limit for the AIX version.

The procesor is also entirely insensitive to case, except for filenames under UNIX.
Esentially, Mx readstwothings: keywordsandnumbers. Unlessexpli citl y stated atherwise,
thefirst two letters of akeyword aresufficient toidentify it. Keywordsare separated by one
or more blank spaces. Once the program has identified a keyword you can extend it to
anything you like as long & it doesn't have a bank character in it, so Data and
Data silly words havethe same dfed.

Quite often, a keyword has the format KEY=123 where 123 is a humeric value to be inpu.
Thisiscdledaparameter. Mx ignoresall (includingblanks) nortnumeric charadersfound
between recognition d a parameter and reading a number, so that NI=100 andNInput_vars
a lot of words 100 have the same dfed.

Note: The exception to this rule is when it encourters a #define’ d variable, which it will
accet instead of anumber.

Syntax Conventions

The syntax described for commands foll ows these anventions:

o dternatives are represented by /

e optional parameters or keywords are enclosed by { and}

» itemsto be substituted according to the spedfic gpplicdionare enclosed by < and >
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Job Structure

Mx has been written for multiple groups, since genetically informative data generally
comprise information on dfferent types of relatives which form distinct groups. At the
beginning of an Mx script, you have to say how many groups there ae with a #\group
statement. A group begins with atitle line that contains from 1 to 1200charaders’ for
reference The secondlineisthe Grouptype line, and the groupends with an Output line.
What happensin between varies acording to what type of groupit is. Currently there ae
3 types:

 DATA - containing datato be analyzed

e CALCULATION - alowing matrix operations for output or to simplify structure

e CONSTRAINT -for noninea equality andinequality constraints between parameters

Any number of ead type of group can be spedfied, in any order. Unless one of the
keywords Constraint or Calculation appeas on the data line, Mx expeds to read a Data
group. Effedively, there ae 3 thingsto da

e Suppy the data

»  Describe the model

* Request options

To dothis, the input script will consist of groups, ead having the foll owing structure:

1. TITLE

2. DATA: indicae grouptype: data/cdculatior/constraint

3. Rea andseled any observed data, supgy labels

4. MATRICES: dedare & |least one matrix

5. Spedfy numbers and parameters, starting values, equality constraints

6. MODEL: define matrix formula: covariancemeans/threshold/compute

7. Requestfit functions, statisticd output and ogimization ogions, multi plefit mode, save
matrices and job spedfication

8. END command

Steps 1-3 suppy data and are described in Sedion 3.%3.5, steps 4-6 define the model
(Sedion4.1-4.6), andsteps 7-8requestsoutput (Sedion 5.15.4). Constraint andcdculation
groups do nd read any data, so they omit step 3.

"or only 500 onthe IBM AlX operating system
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Single Group Example
For example, an inpu file may look like this:

#Ngroups 1
Simple MX example file
Data NObservations=150 NInput variables=2
CMatrix 1.2 .8 1.3
Begin Matrices;
AFull 21
D Diag 2 2
End Matrices;
Specification A
12
Specification D
03
Start .5 all
Covariance model A*A' + D /
Options RSiduals
End

Thiswould fit, by maximum likelihood(the default) afador model to a @mvariance matrix
calculated from 150 olservations of two variables. The model is rown as a path dagram
in Figure 3.1. Detail s of this example will be foundin the foll owing sedions.

Y1 Y2
0 yA

Figure 3.1 Fador model for two variables. Freeparameters are indicated by x, y and
z. Causal paths are shown as sngle headed arrows and correlational paths are shown as
doule-healed arrows.
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#Define Command

Syntax:
#define <name> <number>

Various commands and keywords used in Mx scripts seach for a number. During this
search, if MXx encourtersaletter it will read theword and chedk the dictionary for matching
#define'd words. If theword isfourd, the gpropriate number is substituted. If it hasn't, a
warning will be printed and the search for a number or a#define’ d variable will continue.
Care is neaded with spelli ng!

In multivariate modeling it is quite cmmon that the same matrix dimensions are used in
many different parts of a script. For example, in an oHique fador analysis, with 10
observed variables and 2fadors, the dimensions of the matrices needed to definethe model
are dictated by these numbers. If matrix L containstheloadings, P the crrelations between
the loadings, and matrix E theresiduals, we would require L to be of order 10x2, P to be
2x2 and E to be of order 10x10. We might spedfy thisin Mx with a script of the form

Title - factor analysis
Data NInput=10 NObservations=100
CMatrix File=mydata.cov
Matrices
A Full 10 2 Free
P Stan 2 2 Free
E Diag 10 10 Free
Covariance A*P*A' + E /
Start .5 all
End

However, this <ript could be made more general with a mwupe of #define statements:

#define factors 2
#define vars 10
Title - factor analysis
Data NInput=vars NObservations=100
CMatrix File=mydata.cov
Matrices
A Full vars factors Free
P Stan factors factors Free
E Diag vars vars Free
Covariance A*P*A' + E /
Start .5 all
End

Gainis snal inthis smplemodel - we changetwo numbersto change the number of fadors
and number of observed variables, instead of seven. With more complex models, the use
of #define can make scripts much simpler and more versatil e.
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Matrices Dedar ation

Syntax:
Begin Matrices; or Matrices= {Group <n>}
<matrix name> <type> <r> <c> {Free/ Unique}

End Matrices;

Matrices must be dedared after reading any datafor the group,and before assgning values
or parameters to matrix elements. All dedared matrices initially have zero for eah
‘modifiable’ element. By default, all matrix elements are fixed. If the keyword Free
appeas, eadh modifiable dement has a free parameter spedfied, starting at the highest
parameter number yet spedfied below 10,000 If the keyword Unique is present parameters
are numbered from 10,000 onvards. Unique helps to kegp parameters from acddentally
being constrained with subsequent spedfy statements. Seepage ?for more detail s on
dedaring matrices.

Matrix Algebra

Syntax:
Begin Algebra;
<matrix name> = {funct} <matrix name> {operator <matrix name> };

End Algebra;

Algebrasedions provide asimple way to evaluate matrix algebra expresgons, as siownin
Appendix C.

In many cases bresking up a compli cated matrix algebra expresson into smaller parts can
improve readability or efficiency or both. For example, the matrix formula
(I-A)*S*(I-A)"" will find the inverse of twice When matrix A is snal the loss of
efficiency will be negligible - the extratime taken to re-program will be greaer than any
gained in exeaution time. For large A, the comporent (I-A)* can be omputed as an
intermediate step so that the gou-intensive matrix inversionisonly carried ou once andwe
have acompad andreeadable script. Algebramay bethought of asaspedal form o f matrix
dedaration. Each matrix that appeas onthe left hand side of the = sign is hewly defined
inthisgroup (it must not have been previously defined). Note that matrix B, defined in the
first line of algebra, may be used in subsequent lines.
Begin Matrices;

A Full 10 10

S Symm 10 10

I Iden 10 10
End Matrices;
Begin Algebra;

B = (I-A) ;

C = B*S*B" ;
End Algebra;
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3.2 Group Types

Every group hes to begin with a Title line and a Group-type cmmand. In a data group,
these statements may befoll owed by reading of data. These mmmandsaredescribedinthis
sedion.

TitleLine

Thetitlelineis purely for the user's reference, it is printed when Mx prints the parameter
spedficaions and the parameter estimates for a group. It is most useful when there ae
multi plegroups. Thetitlelineisreagnized by itslocation(the beginning of agroup) rather
than by akeyword at the start of aline.

Group-typelLine

Syntax:
Data/Calculation/Constraint {NGroups=n NInput vars=n NObservations=n}

where Calculation defines a calculation goup andConstraint a constraint group, the
default being aData group

Every groupmust have adataline. It has a number of parametersto indicae

i. what kind d groupisbeinginpu

ii. if itisthefirst group,NGroups, the number of groups, and

iii . various charaderistics (the number of input variables NInput_vars and the number of
observations NObservations) of the datato be analyzed, if any.

The parameters may be spedfied in any order, and are summarized in Table 3.2. Note that
Data groupsmust haveNInput vars andNObservations keywords. Constraint groupsonly
requireNInput_vars, and Calculation groups need no @rameters except NGroups if it isthe
first group.

Table3.2 Parameters of the grouptypelinein Mx inpu files.

Parameter Function Required for group(s)
Data Spedfies adata group Data

Calculation Spedfiesa cdculation group Calculation
Constraint Spedfies a nstraint group Constraint

NGroups Number of groups First group
NInput_vars Number of input variables Data, constraint
Nobservations Number of observations Data

Nmode | Number of models Weighted likelihood*

* required for fitting mixture models only, seesedion 4.3 on pge 70
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3.3 Commandsfor Reading Data

Covarianceand Correlation Matrices

Syntax:
CMatrix/KMatrix/PMatrix {Full} {File=filename}

In adata group,a covariance matrix may be read using the keyword CMatrix. By default,
CMatrix expedsto read thelower triande of anNInput vars x NInput_vars matrix, from
theinpu file. If the keyword Full appeas, then afull matrix will beread. The matrix is
read in freeformat, that is, the numbers are expeded to be separated by one or more blank
spaces or carriage returns. If the keyword File appeas, then Mx will read the data from

afile. Thislatter methodis generaly to be preferred, sinceit keeps the datain one place
If the data ae dhanged, it is not necessary to change every script that uses these data.

A FORTRAN format [in parentheses, e.g., (6F10.5)] for reading data must be thefirst line
of adatafile. If thefirst linejust has* or (*) onit, the data aereal in freeformat, i.e.
numbers are separated by one or more spaces or new line charaders.

RS Correlation matrices (KMatrix) and matrices of paychoric or payserial correlations
(PMatrix) areread inthe sameway ascovariancematrices(CMatrix). Althoughthediagonal
elements of these matricesareal 1.0,andcould in principle be omitted, they are needed for
Mx to read thefile corredly. Seepage 120for an example of speda methods required for
maximum likelihoodanalysis of correlation matrices.

Asymptotic Variances and Covariances

Syntax:
ACov/AVar/Alnv {File=filename}

In order to use asymptotic weighted least squares or diagonall y weighted least squares ( see
p. 79 itisnecessary to read aweight matrix. For compatibility with PRELIS (Joreskog &
Sorbom, 1986 1993, Mx expedsto receve aweight matrix multi plied by the number of
observations. If the File= option is used, a PRELIS output file (creded with the
SA=filename or the SV=f1iTename PRELIS commands) may beread. By default, MX expeds
to recaeve an asymptotic weight matrix (ACov) whase size depends on (i) NInput_vars and
(i) whether a correlationmatrix or covariancematrix hasbeeninpu. If NInput_vars=k,then
if CMatrix has been inpu, the number of rowsin ACov is

p=k(k+1)/2
or if PMatrix or KMatrix have been input, the number of rowsin ACov is
g=k(k-1)/2.

The weight matrices can thus be very large - of order
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p(p+1)/2 or q(g+1)/2

If you e PRELIS, please be sure to use PRELIS 2 instead of PRELIS 1, as the
off -diagonal elementsof the asymptoticweight matricesproduced by PRELIS 1 appea quite
inacarrate at the time of writing (PRELIS 1.20and ealier). Later versions of PRELIS
output the file in binary format, which must be dcanged with the bintoasc.exe or
bintoggl.exe utility supdied with PRELIS.

An ACov line makes AWLS the default method d estimation for that group. If AWLSis
requested onthe Options linein agroupwithou an ACov, and error will result. Similarly,
DWLS isdefault if AVar isread.

Notethat inverting the asymptotic covariance matrix can take an appredable anourt of time

for large problems. Two fadliti es are avail able to combat this problem. First, theinverse
of the matrix can beread instead. A simple MX job could be used to invert and save the
inverse, for example:

Commands to invert a 325x325 asymptotic weight matrix
Data Calculate NGroups=1
Matrices
P Symm 325 325
Compute P/
Matrix P File=weight.asy
Output MXZE=weight.inv

Theinverse of the asymptotic matrix (AInv), saved in the fileweight.inv could be used in
placeof the matrix itself, with a command o theform: AInv Full File=weight.inv. The
Full keyword is esential here becaise Mx is agnostic ebou the symmetry of square
matrices creaed in cdculation groups. It is safer to assume that it is not symmetric to
maintain consistency aaossapplicaions. The second, aternative gproad isto use the
binary save feaure described on page 99, which saves the whole job spedfications.

A common error in reading data with CMatrix or ACov commands is to read them as full
matrices when they are stored as gymmetric, or viceversa. Mx attemptsto be abit smarter
abou this process If auser forgetsto put the Full keyword onthe CMatrix line, bu Mx
deteds an Mx-style datafil e that was saved in full format, it will read it asfull i nstead.

Variable Length, Redangular and Ordinal Files

Syntax:
VLength/Rectangular/Ordinal {File=filename} {Highest <numlist>}

Mx will read two types of raw data for multi variate normal maximum likelihoodanalysis.
Rectangular readsregular data, i.e. where every observation hasthe same number of input
variables (NInput_vars ontheData line). Misgng values may be spedfied with a. (dot) or
anather code (seeMissing command on @ge46). Thisisappropriateif there aerelatively
few misdng data, or if misgng data have been imputed.
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VLength is a variable length record reader, which all ows reading of raw data where there
may be many missng values. The default (and mandatory) format for these dataisfree. A
line with comments or * can be placal at the start of thefile, but it will beignored by MXx
except for printing awarning andthelineitself intheoutput file. Thestructureof aVLength
fileis:

* number of inpu variables (k)

* identificaion codes for the k variables

» observed datafor the k variables.

For every case, the number of input variables must be on aline by itself. Theidentificaion
codes must beintegersthat correspondto codesread by the ICodes command (seepage 77).
For example, afile might contain the foll owing:

3

123 .33 .62 .95
2

231.4-2.2

1

2 .37

Thisexamplereads 3 variablesfor thefirst observation,withidentificaioncodes1 2 3,and
datavalues.33 .62and .95. The second olservation hasno datafor variable 1, bu supgies
datafor 2 and 3,whil e the third supgies datafor variable 2 alone. By default, data of this
type ae fitted using the raw maximum li kelihoodfit function (seepage 82).

Itisquite simpleto prepare VLength fileswith SAS or SPSS However, caution shoud be
exercised with SASwhich usesa. for amissng value. Depending onthe operating system
under whichyouarerunning Mx, thisdot may produce afileread error or bereal asazero.
Here are afew lines of SAS code to ouput aVl ength file from an array of two variables
V{2}, either or bath of which may bemissing. Thethird andfourthlinesneedto bemodified
to dedare the length of the aray and to copy the required variables to the aray into it.
Certain appli caions may also neal to change the format of the PUT statement that writesthe
data values.

DATA ONE; SET ZERO;

COUNT=0; NVAR=2Z; /* Number of variables in total !!Change!! */
ARRAY V{2} AT1 AT2; /* Set up array for variables !!Change!! */
DO I=1 TO NVAR: /* Count the non-missing observations */

IF V{I} NE . THEN DO; COUNT+1; END: END;

FILE MXVLFILE; /* Filename for future Mx input !!Change!! */
IF COUNT NE 0 THEN DO; /* Write observations if there are any */

PUT COUNT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT I @@; /* Write the identifiers */

END; PUT;

DO I=1 TO NVAR;

IF V{I} NE . THEN PUT V{I} 13.6 +1 @@; /* Write the data values */
END; PUT:

END;
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Note: format statements are not valid for either redangular or VL files.

Simil ar to theredangular commandto read raw continuows data, theOrdinal fil e statement
readsin ordinal datafrom aredangular file. By default, a. (dot) charader separated by
spaces is reagnized as a misgng value, and this default may be canged by inserting a
Missing command beforetheOrdinal statement. Ordinal datamust be spedfied by integer
categories, with the lowest category zero. The highest category in the ordinal data is
automaticdly deteded by MX, but in some caes, espedally multigroup analyses, it is
necessry to override this default with auser spedfied value. Thelargest valuein the data
file must not exceel the crrespondng value in the highest statement.

Missng Command

Syntax:
Missing=<code>

The missng command may be used to supdy a charader string other than . (dot) to be used
for missng values, e.g. Missing=N/A. Notethat Mx respondsto the exact character string,
andnat the numerica valueof that string. For example, if Missing=-1.0 hasbeen spedfied,
then neither -1 na -1.00would be recognized as missng.

Definition Variables

Syntax:
Definition variable <label>

Specification <matrix name> {element 1ist} label {element Tist}

This feaure dlows ‘multilevel’ statistica analyses with VL or redangular data files.
Essentially, some variables may be asdgned as definiti on variables which can then be used
in constructing the model. Definition variables are auitomaticaly #define’d so that their
namescan beusedinSpeci fy statements. A matrix containing adefinitionvariablechanges
for evay casein the raw data file. Seepage 133for an example that al ows continuows
moderators - effedively as many groups asthere ae caesin the datafile. Labels should
be provided for all variables before using the definiti on statement.

Contingency Tables

Syntax:
CTable <r> <c> {File=filename}

Mx will read contingency tablesof order r by c. NInput_vars must be 2 for agroupreading
a aontingency table. Both r and ¢ must be greaer than 1 bu they do nd have to be equal.
A contingency table cntainsfrequency data (or courts) such that ead cel C; indicaesthe
number of observations falling in row caegory i and column category j. Normally, the
frequencies suppied shoud be greaer than or equal to zero.
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AN

Means

If frequency data aeread dredly into the script, they need to start onanew line, following
the CTable <r> <c>line.

Mx automaticaly handesincomplete ascertainment which the user can flag by suppying
a negative number for cdlsthat have nat been ascertained (see xampleon p. 8. Instead
of modeling means, the placament of thresholds on the underlying li abili ty distributionis
spedfied with the threshold statement, as snown on fage 69.

The ordering of the cdegories oud follow the natural numbering of the rows and
columns, so that atablewith astrong positive wrrelation ketween the variableswould have
large frequencies on the lealing diagonal. Supdying a CTable changes the default fit
function to the likelihood d observing the frequencies assuming a bivariate normal
distribution of li abilit y underliesthe observed presencein a cdl. Seepage 85for detail son
fitting structural equation models to contingency table data.

Syntax:
Means {File=filename}

A vedor of means, length NInput vars may be read. When fitting models by maximum
likelihood,amatrix formulafor the predicted means may be provided. Thejoint likelihood
of themeansandthe cvariancesis maximized, enabling tests of hypotheses about equality
of means aaossvariables or acossgroups.

Higher Moment Matrices

Syntax:
Skewness/Kurtosis {File=filename}

Matrices of skewnessand kurtosis may be read with these aommands. These ae provided
for future developmentsin Mx that will allow model fitting to thesetypesof datain addition
to means and covariances. Currently there is no fadlity to use matrices read in this way.
However, modd fitting with higher moments could be dore with user-defined fit functions
(seepage 86).

3.4 Labd and Sdeda Variables

Labeling Input Variables

Syntax:
Labels <1list of Tabels>

Labelsmay begivenfor theobserved databy isalingal abel command, keforetheMatrices
command. These labels may be used to seled variables, for example:
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Data NGroups=1 NInput vars=3 NObservations=171
CMatrix File=Cov.mat

Labels ALC1 ALC2 AGE

Select ALC2 ALCI /

would read the lower triangle of a 3x3 covariance matrix from the file Cov.mat, and label
thevariablesALC1 ALC2 andAGE. ThevariablesALC2 andALC1 arethen seleded for analysis,
changing their original order. See &so page 76 for detail s onlabeling spedfied matrices.

Seled Variables

Syntax:
Select <numlist or varlist> /

Variables may be seleded for analysis using the Select command. The command may be
used to reorder data or to pick areduced number of variablesfor analysis. In either case, a
; or / must endthe ommmand Select acceptsintegers which correspondto the order of the
inpu variable. More mnveniently, Select will operate on variable labels (seepage 47).
The command will work with raw data & supgied by the Rawdata or VLength commands
(seepages 82and 44.

Seled If

Syntax:
Select If <label> {< = > "< *= *>} value/
where * denotes not.

Seled If may be used in conjunctionwith raw data (VL or Rectangular) to seled asubset of
thedatafor analysis. Thisfeaureisuseful to eliminate outliersformaraw dataset, if a cae
number or id variable has been included. For example,

Rectangular File=mydata.rec

Labels casenum BMI skinfoldl skinfold2;

Select If casenum *=253;

Select BMI skinfoldl;

might be used to eliminate dl cases where caenumber is 253.

Seled with Variable Length Data

In combination with the VL or redangular data, seled changes the identificaion codes to
conseadtive integers garting at 1. For example, if the following Select line was read:
Select 34 2/

aVlength record of the form:

4

1234 .1.2.3 .4

would be changed to:

3

123 .3 .4.2
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thustheobservation aiginally numbered 3 hasbeameobservation 1, olservation numbered
4 hasbeoomeobservation 2,and observation rumbered 2 hasbecomeobservation 3. Select
will automaticadly reducethe number of datavedorsif there aenomatchesfor aparticular
datavector andthe adesintheSelect line. Thefinal number of vedors and olservations
used in the analysisis given in the output file.

Select canna contain more numbersthan the NInput vars spedfied ontheData line. To
dosowould necessarily result in asingular correlation a covariancematrix. Likewise, the
same variable canna be seleded twice

3.5 Calculation and Constraint Groups

The use of cdculationand constraint groupsisvery similar the use of groupsthat read data.
All threetypes of groupare fully command compatiblewith the exception d commandsfor
reading data, which can be used by data groups alone.

Calculation Groups

The keyword Calc onthe Group-type line indicaes that the groupis used for cdculation.
The cdculated matrix formula from such a groupis printed if the RSiduals command
appeas on the Options line. There ae no restrictions on the type and dmensions of a
matrix than can be produced with this command (other than memory li mits). The result of
the calculation may be used in later groups by using the =%En syntax when spedfying a
matrix, where nisthe number of the cdculation group. Note that thereisastrict ordering
within the inpu fil €] results canna be taken from a cdculation that has not yet occurred.

The Calc group povides a fadlity for printing out results of matrix operations. Any

cdculation groupthat is nat foll owed by a wnstraint or data groupis not caculated urtil
the end d optimization, thus avoiding unnecessary waste of computer time.

Constraint Groups

Constraint groups may be used toimpose nonli near equali ty or inequality constraintsamong
the parameters. Three speda operators may be used to impose @nstraints between
matrices. For example, supposewewish toimpose the mnstraint that x*+y? =1 wherex has
parameter spedfication 1 and y has parameter spedficdion 2. A constraint group to
acomplish this might be:

Constrain parameters to ensure that x*x+y*y=1
Constraint_group

Begin Matrices;

AFull 21

I Iden 11

End Matrices;

Specify A'1 2 ! Put parameters 1 and 2 in to A
Constraint A'*A=I; !Inner product works out x*x+y*y
End Group;
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If we wanted to impase the inequality constraint that x*+y? >1 instead, then we would use
the > symboal in the Constraint statement. Likewise, we could use < to spedfy alessthan
inequality. Only one <, > or = symbad may be used in a mnstraint statement. To spedfy
range constraints such as .5< x*+y? <1 it is possble to spedfy both constraints within the
same mnstraint statement by concaenating them as two inequality constraints:
Constrain parameters to ensure that .5 < x*x+y*y <1

Constraint_group

Begin Matrices;

A Full 21

I Iden 11

HFull 11

End Matrices;

Matrix H .5
Specify A1 2 ! put parameters 1 and 2 into A

Constraint (A"*A_
H) < (I
A'*A); I Inner product works out x*x+y*y
End Group;

Note that the constraints are made dement by element. Using option RS we can seethe
results of impasing equality or inequality constraints.

Whenever MX encourters a anstraint group, it i ncreases the number of degrees of freedom
by the number of norlinea constraints. Thisincrease in the number of statistics is based
on the assumption that ead constraint identifies a parameter, which may not always be
corred. The DF parameter on the Options line (seepage 89) may be used to corred for
fail ures of this assumption.

NPSOL, the optimization routine, treas constraints in an intelli gent fashion; if it finds the
derivatives of the constraint functions with resped to certain parametersto be zero, it does
naot cdculate them during optimization. Thismeansthat if some of the spedfied constraint
functions are dways zero, littl e alditional computational cost isincurred.

Careisneealed to make surethat the constraintscan besatisfied. If thereisnofeasiblepoint
for the constraints - for example, ore of them alwaystakes the value .5 - an IFAIL=3 error
message isreturned. One way to avoid such errorsisto start optimization at a placewhere
the constraints are satisfied.
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4 Building Modelswith Matrices

What you will find in thischapter

How to dedare matrices and label them

The structure of the diff erent types of matrix
What the matrix operators and functions do
When and where to use matrix formulae
Therole of different types of group

All groups, bethey constraint, caculation, a data, require & least one matrix in arder to do
anything. Thenext few sedionsdescribethetypesof matrix that may be used, the operators
that ad on and between them, and ways of putting parameters and numbersinto them.

4.1 Commandsfor Dedaring Matrices

M atrices Command

Syntax:
Begin Matrices {= Group <n>};
<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}

<matrix name> <type> <rows> <columns> {= <name> <group> / Free, Unique}
End Matrices;
wheren isaprevious group number

A group must have the 3-letter MAT command, followed by at least one matrix definition.
As used throughout this manual, we recommend wsing nonrabbreviated commands, such as
Matrices.

Matrix names are restricted to ore letter, from A to Z. The same letter may be used for
different matricesin diff erent groups. If amatrix isdedared twice awarningisprinted and
only the second dedarationis kept.

RS Note that matrix definitions are group spedfic; for example, matrix A in group 1 des not
have to be the same type or size & matrix A in group 2.

If thekeyword = followstheBegin Matrices command,all matricesinthat ealier groupare
automaticdly dedared in the present group.
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Matrix Types
The type of a matrix may be one of the 12 forms described in Table 4.1, and its row and
column dimensionsare spedfied with integers. Oncethetype and size of amatrix hasbeen
defined, it canna be changed.

Table4.1 Matrix types that may be spedfied in Mx.

Type Structure Shape Number of
FreeElements

Zero Every element is zero (null matrix) Any 0

Unit Every element is one (unit matrix Any 0

Iden Identity matrix Square O

1Zero Identity|Zero pertitioned matrix Any 0

Zlden Zero|ldentity partitioned matrix Any 0

Diag Diagonal matrix Square  r

SDiag Subdagonal (zeros on & above diagonal) Square  r(r-1)/2

Stand Standardized (symmetric, oneson dagonal) Square  r(r-1)/2

Symm Symmetric Square  r(r+1)/2

Lower Lower triangular Square  r(r+1)/2

Full Full Any rxc

Computed Equated to formulain previous group Any 0

Note: number of free éements indicakes the number of elementsthat can be dtered by the
user, wherer is the number of rows and ¢ the number of columns of the matrix.

Equating Matrices acrossGroups

Syntax:
<matrix name> <type> <r> <c> = <matrix name> <group numbers
or

<matrix name> <type> <r> <c>

<special quantity> <group number>

Optionally, a matrix may be mnstrained to equal a matrix previously spedfied. For
example, we aould use the command

A Symm 3 3 = Y2

to equate matrix A inthisgroupto matrix Y in group 2. In this example the arrent group
must be number 3 o greder.

Severa additional options all ow constraints to ather quantities foundin previous groups,
such as the observed or expeded covariance matrix. For example, the cmmand
B Full 2 2 = %E1

equates matrix B in this groupto the expeded matrix of group 1.

The spedal codesfor constraining amatrix to equal thase defined ar computed in previous
groups are shown in Table 4.2. These ald to the flexibility of Mx.
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Table4.2 Syntax for constraining matrices to spedal quantitiesin previous groups.
Symbal Matrix Quantity Dimensions
20n Observed covariance (data) matrix NI XNI,
%En Expeded covariance matrix NIxNI,
AMn Expeded mean vedor IxNI,
&Pn Expeded propartions under bivariate normal NR,xNC,
AFn Functionvalue 1x1

Note: NI, isthe number of inpu variablesin groupn foll owing any seledion; NRand NC
are respedively the number of rows and columns in a cntingency table, and may be
requested only if groupn has sich atable.

Itisespedaly important to ndethat noreof the%t, %0, %M, %F and%P equdliti esmay refer
to groups that appear after the aurrent group. When matrices are constrained to be equal
in thisfashion, the type aad row x column dmensions of the ealier matrix areretained. If
the two spedficaionsdo nd agreg awarningis printed. Both the number of rows andthe
number of columns must be supdied for square matrices, but only thefirst isused to define
the size of the matrix.

Equating Matricesto Computed Matrices

Syntax:
<matrix name> computed {<r> <c>} = <matrix name> <group number>

When matrices are dedared with theMatrices command, aspedal type, computed, may be
used to equate to amatrix which was defined within the dgebrasedion d apreviousgroup.
Row and column dmensions are set to those of the previously cdculated matrix, and may
be omitted when dedaring a matrix as computed.

Equating All Matrices acrossGroups

Syntax:
Begin Matrices = Group <number>;

The usual equating of matrices aaossgroupsis sipdemented by aglobal fadlity. All the
matrices defined in an ealier groupare made avail able to the aurrent group. Thisincludes
both matrices that are explicitly dedared and those that are aeded in aBegin Algebra;
...End Algebra: sedion.

Free Keyword
All changeable dements of matrices areinitiali zed at zero and arefixed parameters, uness

the Free keyword isused, in which case eat changeable dement is edfied asadiff erent
free parameter. Examples of the results of using the keyword Free are shownin Table 4.3.
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Table4.3 Examples of use of the Matrices command to spedfy the dimensions of
diff erent matrix types. Thekeyword Free foll owing eat command makes ead modifiable
element in the matrix a separate freeparameter, numbered in order as shown in the second
column. In the third column, values of elements are shown, with ? representing a free
parameter.

Example command Spedficaion Values
Matrix

A Zero 2 3 Free 000 000
000 000

B Unit 2 3 Free 000 111
000 111

C Iden 3 3 Free 000 100
000 010
000 001

D Izero 2 5 Free 00000 10000
00000 01000

E Ziden 2 5 Free 00000 00010
00000 00001

F Diag 3 3 Free 100 700
020 07?0
003 007

G Sdiag 3 3 Free 000 000
100 700
230 0?70

H Stand 3 3 Free 012 17
103 71
230 71

I Symm 3 3 Free 124
235
456

J Lower 3 3 Free 100 00
230 70
456 ?

K Full 2 4 Free 12314 77
5678 7?7

More detail on spedfying parametersin matricesis givenin Sedions4.4to 4.5.
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4.2 Building Matrix Formulae

Readers urfamiliar with matrix algebra may benefit from reading Appendix C, where
examples and exercises are given. Readers familiar with matrix algebra may wish to
examine Tables4.4and 4.5for the variety of avail able operators andfunctions, and wsethis
sedionfor reference

Matrix Operations

In ordinary algebra, operators sich as + -x and + have an arder of evaluation establi shed
by convention. Multiply and dvide aedore before alditi on and subtradtion. Multi ply and
divide are dore in left-to-right order if they appea conseautively, as are aldition and
subtradion. We oould say then, that x and + have priority 1, and + and - have priority 2.
Default priorities can be cdhanged with the use of bradkets (') which spedfy that operations
inside the brackets are dore first. For example, a+bx c=a+bc whereas (a+b)x c= ac+bc.

A similar hierarchy has been establi shed for the matrix operatorsin Mx, and it too may be
revised by the use of bradkets. Table 4.4 shows the matrix operators and their (default)
order of evaluation. Matrix algebra is subjed to cetan rules of conformability -
requirements abou the size and shape of the matrices being multi plied etc. Theserulesare
listed in the right hand column dof table 4, where r, denotes rows in matrix A and c,
columnsin matrix B. The number or rows of amatrix (r,) and the number of columns of
amatrix (c,) are known asits dimensions. Two matrices A and B wherer,=rz and c,=Cg
are said to have the same dimensions.

Table4.4 Matrix operatorsavail ablein M x, together withtheir priority for evaluation.
See 4so Table 4.5for matrix functions.

Symbal Name Function Example Priority Conformability
, Inverse Inversion A 1 r=c

Trangpose Transpasition A’ 1 nore
A Power Element powering A™B 2 nore
* Star Multiplication A*B 3 C\=lp
. Dot Dot product A.B 3 ry=rg and c,=Cg
@ Kron Kroneder product A@Q@B 3 nore
& Quadratic  Quadratic product A&B 3 CA=Fg=Cg
% Eldiv Element division A%B 3 r,=rg and c,=Cy
+ Plus Addition A+B 4 r,=rg and c,=Cy
- Minus Subtradion A-B 4 ry=rg and c,=Cg
| Bar Horizontal adhesion  A|B 4 rA=rg

Under Verticd adhesion AB 4 C\=Cg

A line has been drawn between the first two operators (Inverse & Transpose) and the rest
becaiseinverse andtranspose are unary operators, that is, they operate onone matrix. The
rest form a single new matrix from two matrices, and are thus binary operators. These
operators are now described in detail .
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Inverse”

Only square matrices may beinverted, but they may be dther symmetric or non-symmetric.
Theinverse of matrix A isusually written A" andimpliesthat AA*=A* A =1 wherel is
theidentity matrix. Torequest aninversewith Mx, weusethesymbad ~. If theinversedoes
not exist (possbly dueto roundng errors), Mx will t erminate with an error message. Some
precautionscan betakento avoid this, such as suppying starting valuesthat all ow inversion,
or putting boundary constraintson parametersto prevent their taking valuesthat would lead
to asingular matrix.

Transpose ’
Any matrix may be transposed. Thetranspose of A iswritten A’. The order of the matrix
changes from rxc to cxr, as the rows bemme the wlumns and vice-versa.

Power #

All the dements of amatrix may beraised to apower using the® symbad. Essentialy, this
operator worksthe sameway asthe Kronedker prodict (seebel ow), but elements of thefirst
matrix are raised to the power of thosein the secondmatrix instead of multiplied by them.
It is possible to use negative powers and noninteger exporents to indicate redprocd
functions and rooats of elements, bu it is not posdble to raise anegative number to a
nortinteger powver. For example, the abe of every element of amatrix would be obtained
by A7B if B wasa 1x 1 matrix with 3asits only element.

For example, the matrix power A”B is ] ]
a’ ah b9 p"

a' al b' bl

ab
g h c9 ¢ d9 df
cdf ~ (7 | =
I c' ¢! d' d!

e f

ed eh fo fh

el el fl fl]

Multiplication *

* or ‘Star’ is the ordinary form of matrix multiplicaion. The dements of A(mxn) and
B(nxp) are combined to form the dements of matrix C(mx p) using the formula

C = Seq A xB,. Matrices multiplied in this way must be conformable for
multi plication. This means that the number of columns in the first matrix must equd the
number of rows in the second matrix.

For example, the matrix product A*B

| = |exg + dxi cxh + dxj| = |cg + di ch + d
I

e f exg + fxi exh + fx] ge + fi eh + fj

} axg + bxi axh + bxj ag + bi ah + bj



Buil ding Models with Matrices 57

Dot product .

Dot is another type of matrix multiplicaion, which is dore element by dement. For two
matricesto be multiplied in thisway, they must have the same dimensions. Elementsof the
dot product are described by the formula C; = A;xD;.

For example, the dot product A.D is

ab g h axg bxh
cd| . [i j| = |cxi dxj
e f k | exk fx|

Kronedker product @

Theright Kronedker product of two matrices A @ B isformed by multi plying ead element
of A bythematrix B. If A isof order (mxn) and B isof order (px ), then the result will be
of order mpxnq. There ae no conformability criteriafor thistype of product. In MX inpu
filesthe symbd  is denoted with the symbd @.

For example, the Kronedker product A ® B is

-axg axh bxg b><h-
axi axj bxi bxj

ab
g h cxg cxh dxg dxh
cdl o |0 | = . . . .
i cxi cxj dxi dxj
e f

exg exh fxg fxh

Lexi exj fxi fxj |

Quadratic product &

Many structural equation and aher statisticd models use quadratic products of the form
ABA’, and the quadratic operator is both a simple and efficient way to implement
guadratics. Notethat E can be any shape, bu to be conformable for quadratic product the
matrix B must be square and have the same number of columns as the matrix E.

For example, the quadratic product E& B

g h
sk
]

a

ab] - ;

- [a?g+abi +abh+b?%]
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Element division %

% does element by dement division. For two matricesto be divided in thisway, they must
have the same dimensions. Elements of the result, C are described by the formula
C;=A; = D;. If any element of D is zero, the mrrespondng cel in the result matrix is st
to 10°.

For example, the division A%D is

ab g h a+g b+h
cdl % |i j| = |c+xi d+j
e f kK | e+k f=+l

Addition +
Addition of matricesis performed element by dement. For two matricesto be alded, they
must have the same dimensions. Elements of the sum, C are described by the formula

For example, the sum A+D is

ab g h a+g b+h
cd|l + [i j| = |c+i d+]
e f k | e+k f+l

Subtraction -

Subtradion of matricesis performed element by dement. For one matrix to be subtraded
from ancther, they must have the same dimensions. Elements of the difference C are
described by the formulaC;; = A; - D;;.

For example, the difference A-D is

ab g h a-g b-h
cdl - |[i j| = |c-i d-j
e f k | e-k f-I

Note that in Mx thereis also a unary minus operator, so that an expresgonsuch as -A is
legal. This operation changesthe sign of eat element of A.
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Horizontal Adhesion |

Bar al ows partiti oning of matrices. Itsoperationiscaled haizontal adhesion becaise A|D
isformed by sticking D onto theright handside of A. For two matricesto be alhered inthis
way, they haveto have the same number of rows. If A (mxn) andD (mx p) are adhered, the
result C is of order (mx (n+p)).

For example, the operation A|D is

ab g h abgh
cd|l | [i j| = [cdi ]
e f k | e f k|

Vertical Adhesion _

Underscore dl owspartitioning of matrices. Itsoperationiscdled verticd adhesion kecause
A_D isformed by sticking D underneah A. For two matrices to be alhered in this way,
they must have the same number of columns. If A (mxn) and D (pxn) are alhered, the
result C is of order ((m+p)xn).

For example, the operation A_D is

—

_ab_
cd

gh e f

_ v = g h

e f k | i
Kk

Matrix Functions

A number of matrix functions, shown in Table 4.5, may be used in MX. These ae useful
for in spedali zed appli cations involving user-defined fitti ng-functions (seep. 86.
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Table4.5 Matrix functions avail ablein Mx.
Restrictions are onrowsr and columns ¢ of input argument.

Keyword Function Restrictions  Result Dimensions
\tr() Trace r=c 1x1

\det () Determinant r=c 1x1

\sum( ) Sum None 1x1

\prod( ) Product None 1x1

\max( ) Maximum None 1x1

\min() Minimum None 1x1

\abs( ) Absolute value None rxc

\cos( ) Cosine None rxc

\cosh() Hyperbdlic cosine None rxc

\sin() Sin None rxc

\sinh() Hyperbdlic sin None rxc

\tan() Tan None rxc

\tanh( ) Hyperbdlic tan None rxc

\exp( ) Exporent (¢) None rxc

\In() Natural logarithm None rxc

\sgrt( ) Square root None rxc

\d2v() Diagonal to Vedor None min(r,c)x1
\v2d() Vedor to Diagonal r=1orc=1 max(r,c)xmax(r,c)
\m2v() Matrix to Vedor None rcx1

\veq ) Matrix to Vedor* None rcx1

\vedh() Lower triangle to Vedor None rcx1

\stnd() Standardize matrix r=c rxc

\eval() Red eigenvalues r=c rxc

\eveq) Red eigenvedors r=c rxr

\ival() Imaginary eigenvalues r=c rx1

\iveq ) Imaginary eigenvedors r=c rxr

\mean() Mean of columns None 1xc

\cov() Covarianceof columns None cxC

\pchi() Probability of chi-squared r=landc=2 1x2
\pdfnor() Multivariate normal density r=c+2 1x1

\mnor() Multivariate normal integral r=c+3 1x1
\momnor() Moments of multivariate normal  rx1 rx1

\alli nt() All i ntegrals of multinormal

\aorder() Ascending sort order rx1 rx1

\dorder() Descending sort order None rxmax(1,c-1)
\sortr() Row sort None max(1,r-1)xc
\sortc() Column sort None Variable'
\part() Extrad part of matrix

*vec vedorizes by columns, in contrast to m2v, which vedorizes by rows.

"\part (A,B) takes two arguments. The dements of the 1x4 matrix B are used to define a
redangle within matrix A to be extraded.
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Functions, cdled with syntax of the form \ func(argument) differ from operators becaise
they take an argument enclosed by parentheses (). This argument may be asingle matrix
name, or a complex matrix formula. The agument is evaluated before the function is
applied, consistent with the rules for using bradets. Functions form a secondset of unary
operators (seepage 55). Descriptions of these functions foll ow.

Trace\tr()
The traceof amatrix is the sum of the dements onthe leading diagond, i.e.

> A

It isonly all owed for square matrices.

Determinant \det( )
Properties of determinants, andways of cdculatingthem arediscussedin Appendix C. This
functionis cdculated for square matrices only.

Sum \sum()
The sum of amatrix isthe sum of al its elements, i.e.,
r C
>y A

i-1 j-1

Product \prod()
The product function d amatrix yields the product of all its elements, i.e.,
1111 A

i1 j-1

Maximum \max( )
The maximum function d amatrix yields a 1x1 matrix containing the maximum of all its
elements.

Minimum \min()
The minimum function of a matrix yields a 1x1 matrix containing the minimum of all its
elements.

Absolute value \abs( )
The s functionreplaces all matrix elements with their absolute value.

Trigonometric functions\cos( ), \sin( ) etc.
These functions replace d matrix elements with their appropriate trigonametric
transformation, in radians.
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Exponent \exp( ) i}
Any matrix is alegal argument for this function which replaces ead element A; by .

Natural Logarithm\In()

Any matrix isalegal argument for this functionwhich replaces ead element A; by In A;.
If an element islessthan 1x10°° then the result isIn (1x103Y). Although error messages
would be more normal in such a situation, this behavior can be helpful in optimization.

Square Root \sgrt()
Any matrix isalega argument for this function which replaces eat element A; by \/KJ
If an element islessthan zero, afatal error occurs.

Diagmal to Vedor \d2v()
Theleading diagona of any matrix is placed into a column vedor withmin(RbC) rows, i.e.
r or ¢, whichever isless eg.

ao0o0o a
if A=(0 b 0 0| then \d2v(A) = b
00cO (o

Vedaor to Diagaonal Matrix \v2d()
A row or column vedor is placed in the leading diagonal of a square matrix. e.g.

a0o00o0
_ OboOO
if E=[a b c d] then \v2d(E) =
00cO
00O0d
Matrix to Vedor \m2v( )
A matrix isplacel in a olumn vedor, by rows. Thus
a
: ab b
if A= then \m2v(A) =
cd c
d

This is similar to the function \vec; which paces the matrix into a vedor by columns,
instead of rows.
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Matrix to Vedor \veq )
A matrix is placed in a clumn vedor, by columns. Thus

if A=

ab
d] then \vecA) =

o T O 9

Notethat it ismore dficient to use \m2v(A) than \vec(A") andmore dficient to use \vec(A)
than \m2v(A"). Both functions work for matrices of any shape.

Matrix to Vedor \vedh( )
All the dements on the diagonal and below are placed into avedor, by columns. Thus

a
) ab
if A= l then \vedi(A) = |cC
cd q

Like its courterparts \vec and \m2v, this function will operate on matrices of any shape,
terminating at the last row or column, whichever isthe smaller. Thus

A
ab c

if A={[c d| then \vedh(A) = |e
e f d

.f.

Standardize \stnd( )
This operation converts a mvariance matrix into a correlation matrix. Replacanent of

elements is made acording to the formula:

The diagonal elements of A have to be greaer than zero, and A hasto be square.
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Real Eigenvalues\eval()
The red parts of the @genvalues of a square matrix are placed in a ©lumn vedor, in
ascending order of size, small est first.

Real Eigenvedors\eve( )

Thered parts of the @genvedors of a square matrix are placel in a square matrix, where
column j containsthe egenvedor correspondng to eigenvaluej, with eigenvalues ortedin
ascending order of size, smallest first (j=1).

Imaginary Eigenvalues\ival( )
Theimaginary parts of the @genvalues of asquare matrix are placed in a olumn vedor, in
ascending order of size, smallest first.

Imaginary Eigenvedors\iveq )

The imaginary parts of the @genvedors of a square matrix are placed in a square matrix,
where column j contains the @genvedor correspondng to eigenvalue j, with eigenvalues
sorted in ascending order of size, smallest first (j=1).

Column Means\mean( )
This function computes the means of the columns of a matrix.

Column Covariances\cov( )

This function computes the cvariance matrix of the alumns of amatrix. Thusif data ae
presented as one li ne per subjed, with r rowsfor eat of the ¢ variables, the output would
be of order cxc.

Probability of Chi-square \pchi(x)

Function \pchi computes the probability of a chi-squared with nu degrees of freedom. Its
argument must be alx2vedor containingthe di-squared and degreesof freedom. It returns
alxlmatrix. Thiscan beuseful whenwriting parameter estimatesandfit statisticsto afile.

Multivariate Normal Density \pdfnor (A)

The function \pdfnor computes the multi variate normal probability density function (pdf)
given by themulti variate normal distribution. Intheunivariate cae, thisisthe height of the
normal curve. Matrix A, the agument of thefunction,isanvar+2x nvar matrix, containing:
(first row) avedor of observed scoresx;; (secondrow) avedor of popuationmeans|y;; and
(rows 3 to nvar+2) the popuation covariance matrix Z. The pdf is

IznzlntZeXp _%(Xi - “i)lz_l(xi - “i)

Multivariate Normal I ntegration \mnor ()

Thematrix function \mnor will compute multi pleintegrals of the multi variate normal, upto
dimension 10. Itsinpu is gructured so that for n dimensional integration, the matrix has
n columns and n+4 rows. Thefirst n rows define the covariance matrix, row n+ 1 defines
the mean vedor, thelast three a@e used to define the type of truncation experienced by eat
variable. Thisis best described with an example. The script:
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Test multivariate normal integral function
Data Calc NGroups=1

Matrices
A full 1 2 ! Upper limits
B full 1 2 ! Lower limits

R Stan 2 2 ! Covariance matrix
Z Full 1 2 ! Means

Compute \mnor((R_Z_ A B T)) /
Matrix R .3

Matrix B 0 0

Matrix A 11

Matrix T 2 2

Option RSiduals

End

|
!
T Full 12 ! Type of integral
|
!

computes theintegral of the bivariate normal distributionwith correlation .3from0to 1in
both dimensions. The type parameters (matrix T) are flags that indicate the type of
truncation required:

» Ointegra from - to &

* lintegral fromb; to

* 2integral froma tob,

» 3integra from -« to « (this dimensionisignored)

where a and b, are the dements of column j of matricesa and b.

Accuracy is st to six dedmals by default. Lower predsion may be set with Option
Eps=<value> though it shoud be noted that this optionwill betreaed globally, i.e., for all
such integralsin a particular run.

Moments of the Truncated Multinormal \momnor ()

The matrix function \momnor will compute moments of the truncated multinormal
distribution. Currently, it will work only with 'tail s of the distribution,though seledionmay
be esent for some variables. Hereis abivariate example:

Test moments of truncated normal function
Data Calc NGroups=1
Matrices
R Symm 2 2 !covariance matrix
M Full 12 !Imeans
T Full 1 2 !thresholds
S Full 1 2 !selection vector
N Full 1 2 '# of abscissae
Compute \momnor((R M T S N)) /
Matrix R1 .51
Matrix M 0 0
Matrix T 1.282 1.282
Matrix S 11
Matrix N 16 16
Option RSiduals
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End

This script requests the mvariances and means of individuals sleded above the threshold
1.282inaN(0,1) bivariate normal distribution. It returnsthe wvariancematrix in the first
n rows, and the meansin row n+1.

Note: thisfunction can give incorred results when the number of abscissaeis snall, or the
threshddsare extreme (morethan 3standard deviations from the mean). CPU timewill go
up with the number of abscissae bu 64 isthe maximum (and it goesinjumps 16 20 24 2
48 64,along with some small er jumps below that). Mx automaticdly asggns the number
of abscissaeto: i) 16if youenter O or less ii) 64 if you enter 64 a more, and iii) the next
lowest value if you happen to chose an intermediate value (e.g. it will pick 24if you enter
30).

All Intervals of the Multivariate Normal Distribution \alli nt()

Itisoften necessary to computethe probabiliti esof all the cél sof amulti variate normal that
has been sli ced by avarying number of threshddsin eat dmension. Thesethresholdsare
moreformally cdled hyperplanes. Whileit ispaosshbleto usethe \mnor functionto achieve
this goal, it can be more dficient and more convenient to use the \allint function. The
argument to the \allint function must be amatrix with as many columns as there ae
variables, and with as many rows as the number of columns plus 2 pus the maximum
number of thresholdsto be evaluated. Thegeneral formis\allint(R X T A) whereRisthe
m x m covariance matrix of m variables, X is the mean vedor, T is arow vedor whose
elements t; spedfy the number of threshadsin dmensioni, and A contains the thresholds
andis of order (max(t;) x m).

\Al1int returnsthe propationsin all the cdls, cycling from lowest to highest with the last
variable in R changing most slowly. For example, the foll owing script:

#NGroups 1
#define nvar 2 I number of variables
#define maxthresh 3 ! maximum number of thresholds
Test of allint function
Calculation
Begin Matrices;
A symm nvar nvar
N full 1 nvar
X full 1 nvar
T full maxthresh nvar
End Matrices;

Matrix A1 0 1 ! identity matrix here
Matrix X 0 0 I zero means
Matrix N 2 3 ! first dimension has 2 thresholds (3 categories), second has 3
Matrix T
-1.282 -2.323 ! thresholds are -1.282 and 0 for first dimension,
0 0 ! and are -2.323, 0 and 1.282 for second dimension

10 1.282 !
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Begin Algebra;
C=\allint(A X NT) ;
End Algebra;
End Group

will return:
MATRIX C
This is a computed FULL matrix of order 1 by 12
[=\ALLINT(A X N T)]

1 2 3 4 5 6 7 8 9
1 0.0010 0.0490 0.0400 0.0100 0.0040 0.1960 0.1601 0.0400 0.0050
10 11 12

1 0.2450 0.2000 0.0500
containing the desired probabiliti es.

Ascending Order \aorder()
Thisfunction gets the acending order of a wlumn vedor. For example, \aorder(A) with

6 3
A =|1]| woudyield| 1
3 2

Descending order \dorder()
Thisfunction getsthe descending order of a wlumn vedor. For example, \dorder (A) with

.6 1
A =|.1| would yield | 3
3 2

Sort Rows\sortr ()

Used to sort a alumn vedor or matrix by rows. If avedor, the vedor elementsthemselves
are sorted. If amatrix, the first column is taken to be the sort order - and must contain a
permutation of the integers 1 to the number of rows, as might be extraded using, e.g.,
\aorder() above.

Sort Columns\sortc( )
This function works the same way as \sortr() bu by columns.

Extract Part \part(A,B)

Thisfunctionextradsaredangular sub-matrix of matrix A (formerly thiswaspossbleonly
by pre- & post-multi plying by elementary matrices). Onehasto be very careful toinitiali ze
matrix B before this gatement is given, because the result dimensions are nealed to chedk
syntax. To pre-initialize B youwould use the foll owing job structure
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Title
Calculation NGroups=1
Begin Matrices;
A Symm 3 3
B Full 4 1
End Matrices; I <- End matrix definitions with this statement
Matrix A
1
23
456
Matrix B2 13 3
Compute \part(A,B) / ! <- Compute statement *after* matrix statement
Option RSiduals
End

Theformat for matrix B isrow, column, row, column so in this exampl e the redangle from
2,1(row 2, column 1) to 3,3will be extraded, giving

235

456

Note that the dements of B may define any two oppaite mrners of asubmatrix of A. To

some extent, the \part() functionis binary, bu we prefer to list it with the other matrix
functions.

4.3 Using Matrix Formulae

A matrix formulaisaseguenceof matrix names and matrix operatorsterminated by asemi-
colon. For example
A*B + \m2v(C);

Covariances, Compute Command

Syntax:
Covariances/Compute formula;

The covariance ®mmand wsesthe matrices eafied foll owing theMatrices commandand
spedal symbds to perform operations or functions on a between them. A Covariance
statement may contain asingle matrix and no orations, or it could bevery complex. The
command may extend over several lines and must end in a ; or /. Compute is the
recommended keyword for cdculation groups, to make reading scripts easier for humans.

The primary method d carying out matrix algebrais within an algebra sedion (seepage
41). Matricesthat appea ontheleft hand side shoud na already exist in that group.

Means Command

Syntax:
Means A formula;
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The Means command operates in the same way as the Covariance command. It exists to
faalit ate the modeling of means. All the matrix operators andfunctions (Sedion 4.2 may
be used just as when spedfying amodel for covariances. A ; or / must end the command.
Currently, Mx will do nahingwith modelsfor meanswhen applyingthefunctionsLS, GLS,
AWLS, DWLS. Only theML, US andRM fit functions make use of models for means.

Threshold Command

Syntax:
Threshold A formula;

The Threshold command oferates in the same way as the Means to spedfy thresholds. It
enables modeling of threshalds when fitting to contingency table data. All the matrix
operators and functions (Sedion 4.2 may be used just as when spedfying a model for
covariances. A ;or / must endthe ommand.Threshold canna be used with any fit function
other than cortingency table ML, which is used when CTable data have been supgied (see
chapter 5).

Speda restrictions apply to the dimensions of the matrix cdculated in the Threshold
command. The result must have 2 rows and must have & least d columns where d=max
((r-1),(c-1)), in ather words, at least one lessthan the number of rows or the number of
columnsin the wntingency table, whichever isthe greaer. Thefirst (r-1) elements of the
first row of the matrix will contain the thresholds that separate the rows. The first (c-1)
elements of the seaond row of the matrix will contain the thresholds that separate the
columns. These dements are unstandardized row and threshold estimates, which may be
standardized by dividing by the square roct of the product of the two diagonal elements of
the expeded covariancematrix cdculated by theCovariance or Constraint statement. Use
of unstandardizedthresha dsall owsthetesting of model sthat predict diff erencesinvariance
between groups, but have egual threshalds.

®  The user shoud take caeto suppy starting values for threshodsthat increase from left to

rightin bah rowsof the matrix cdculated by the Threshold command. Ided starting values
are those that, when standardized, mark the z-scores on the normal distribution
correspondng to the aimulative frequencies of the normal distribution d the row totals
(first row of the cdculated matrix) or the clumn totals (seand row of the cdculated
matrix). For example, if the foll owing contingency table was supdied as data:

CTable 3 2

20 180 40

360 20 180

then appropriate starting values for 2 row thresholds would be -.67 and +.67 (z-scores
correspondng to the lower 25% and 7%% of the normal distribution), and -1.28would be
appropriate for the starting value of the column threshald (z-score correspondng to the
lower 10% of the normal distribution). Therefore if the threshold model was smply T, we
would dedare

T Full 22

and wse

Matrix T -.67 .67 -1.28 0

to initiali ze it.
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Weight command

Syntax:
Weight <formula> ;

where formulais alegal matrix algebraformula

The fundamental assumption d fitting a model to a popuation is that there is only one
model. However, the popuation may consist of a mixture of groups which dffer in the
parameters or the entire structure of themodel. In Mx, theweight command, coupded with
the Nmode1 parameter, alow analysis of such mixtures when the raw data ae available.
NMode1 controls the number of models suppased to exist in the popuation. The predicted
means and covariances are simply verticaly stadked in the usual matrix expresson for the
means and covariances. For example, if threevariableswere being studied with ore model,
the predicted mean vedor would be of order (1x3) and the predicted covariance matrix
would be (3x3). If two models are being used, the predicted mean vedor shoud be (2x3)
and the predicted covariance matrix (6x3). MX chedks that the size of the predicted
covariance andmean vedorsagreewiththeNMode1 andNInput (including any changes made
with Select/Definition statements). Weight allows modeling of the likelihoodthat a
particular observed vedor is a member of a particular model class The weight matrix
expresson shoud evaluate to a vector of order (N\Mode1x1). The log-likelihood for a
particular vedor then becomes:

Nmodel
Ny = 2 IN(W L)

i=1

where w, isthe weight, L, isthe likelihood undr the i™ model.

Often, theweights used will refled simple propattions, and wsualy 2w, = 1. (seepage 135
for an example). Sometimes, covariates may be used to compute the weight applied to a
particular model. Anexampleof suchweightingisquantitativetrait oci analysiswherethe
probability that apair of siblingshave 0, 1 a 2 alelesin common at a particular placeon
the genome can be used to weight their likelihood unar threemodels (Eaveset al., 199§.

Frequency Command

Syntax:
Freq <formula> ;

where formulais alegal matrix algebraformula

For maximum likelihoodanalysis of raw continuous data, it is possble to enter aformula
for the frequency of the individual observations. For a cnstant frequency that does not
change aaossthe individual cases, this formula could be ascdar (1x1) matrix with the
weight in it. More ommmonly it is desired that the frequency changes aaoss the
ohservations, in which casethe use of definitionvariablesto assgn variablesrealin asdata
to the dements of matrices may be used.
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4.4  Putting Numbersin Matrices

Thissedion describesthreemethods of entering numbersinto matrices (seeSedion 4.5for
how to spedfy elements of matricesto befree fixed or constrained parameters). In Sedion
3.1,wesaw how matrices could bededared asone of 11types, such asidentity, symmetric,
diagonal or full (seeTable 4.1), and haw their dimensions (rows, r and columns, ¢) were
spedfied. Oninspedion d thetable, we seethat typesZero, Identity Identity|Zeroand
Zero|Identity (IZ) have nofree éementsat all. For example, there is nothing more to
know abou an 17 matrix which has 2 rows and 4columns. It looks like this:

1000
0100
andit cannd be changed a all. If it wasaltered, then it would nolonger be an 17 matrix.

All six remaining matrix types have modifi able elements which may be dtered with the
commandsMatrix, Start o Value. Thenumber of modifiable dementsvariesacwrdingto:
*  The number of rows and columns in the matrix

*  Thetype of the matrix

All modifiable dementsof amatrix areiniti alized at zero. Theorder of elementsinamatrix
isleft toright, by rows. For example, asymmetric (3x 3) matrix would be real as:

1

23

456

SeeTable 4.3for more examples on the patterning of matrices.

Matrix Command

Syntax:
Matrix <matrix name> {File=filename} <numlist>
where <numlist>isa freeformat list of numbers.

Note that different syntax is required in multi ple fit mode:
Matrix <group number> <matrix name> {File=filename} <numlist>

TheMatrix command supdiesalist of valuesfor the modifiable dements of amatrix. The
list length required varies acoording to matrix type, and size & described at the start of this
Sedion,on ge 71. For example, suppasewe spedfy adiagonal matrix A with 3rowsand
3 columns. Thefourth columnin Table4.1showsthat the number of free éementsisequal
tor for diagonal elements, so we supgy r elements. The command li nes

Matrix A .3 59

or, equivaently

Matrix-I-would-Tike-to-change-is A

0.3D+00 5 9.00000000

would result in matrix A as:
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300
050
009

TheMatrix command oferates regardlessof whether elements have been spedfied asfixed
or freeparameters.

Matrix will read its elements from a file with a FORTRAN format onthefirst line. Such
files may have been produced by an ealier run d MX, or by another program. LISREL
matrix output files (produced by commands such as gamma=filename onthe LISREL OU
line) are fully compatible. The files must contain at least as many numbers as required to
fill the dhangeable dements of the matrix spedfied (seepage 71).

Mx awaysexpedsaformat, soa* shoud be suppied for matricesin freeformat (numbers
separated by blanks and carriage returns).

Start and Value Commands

Syntax:

Start/Value <value> <element Tist>/ All

where <element 1ist> consists of matrix dements (e.g. A1 2 3 and may include the T0
keyword

In alarge matrix, it is not convenient to provide avaue for al the dements of a matrix,
when only afew need to be modified. Under these drcumstances, it is easier to explicitly
change elementsby name. Elementsmay bereferred to by upto threesubscripts, acarding

to the syntax
A {<group>} <row> <col>

If the matrix youwish to refer toisin the airrent group, the group number may be omitted.
The numbers <group> <row> <col> may be separated by any number of non-numeric or
blank charaders, sothat, for example, to pu .5inrow 2 column 3 d group IsA matrix, you
could enter:

Value.5 A 123

will work the same &

Value.5 A(1,2,3)

N.B. It isonly possble to modify matrices dedared in the aurrent or prevous grougs.
Value andStart reaognize #define’ d variables (seepage 40). For example. We could have
the statements

#define first 1

#define rowsinA 6

#define colsinA 10

at the top d the script, and then

Value 1.5 A first 1 1 to A first rowsinA colsinA

would set 1.5to al the fixed (nonfree elementsof A, from A 1 1toA 6 10.
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The difference between Start and Value lies in their treament of elements when the
keywordsALL or TO are used (- isasynonym for T0). With the keyword ALL, Start assgns
astarting valueto every freeparameter spedfied at that point in theinpu file. Value does
the oppdaite -- it asdgnsits value to every fixed matrix element spedfied upto that paint.
Although Start doesthe same thing if the TO keyword is edfied, i.e. only apply itsvalue
to freeparameters, Value behaves differently. It will assgn avalueto all elementsin the
same spedfied range, freeparameter or fixed.

The T0 keyword shoud be used orly to spedfy arange of matrix elementswithin the same
matrix.

45 Putting Parametersin Matrices

Parall €l to the placament of numbersin matricesdescribedin Sedion 4.4 there aefadliti es
for putting parametersin matrices. Note dso that all modifiable dements of a matrix can
be spedfied asdiff erent freeparametersusing the keyword Free after thematrix is gpedfied
(seeSedion 4.)), and that buil ding models with thisin mind can be much faster and more
flexible (seeChapter 1).

Pattern Command

Syntax:
Pattern <matrix name> {File=filename} <numlist>
where<numlist>isalist of 1'sandO's.

Note that different syntax is required in multi ple fit mode:
Pattern <group number> <matrix name> {File=filename} <numlist>

ThePattern commandisasimplemethodthat hasthe same syntax asthe LI SREL command
onwhich it was based. Foll owing the Pattern command, the user must provide the mrred
number (seeMatrix command page 71) of 1'sand Osfor that matrix. A 1 (or any non-zero
value) indicates that the dement is a free parameter (which may be mnstrained to equal
ancther freeparameter - seethe Equate command on @ge 74), and a0 indicates that the
element isfixed.

Fix and Free Commands

Syntax:
Fix/Free <value> <element Tist>
where<element list>isalist of modifiable matrix dements

The Fix and Free commands operate diredly on spedfic matrix elements or sets of matrix
elements. Fix makes a parameter fixed (if it was Free before) and Free makes an element
afreeparameter to be estimated. Matrix elementsarereferred to by group,row and column
as described in page 72. The keywords T0 and ALL may be used to spedfy ranges of matrix
elementsto befixed or fread. Seepage 99for alternative methodsto fix parameters.

For example, suppae in group 1,matrix A was defined as ymmetric, with 4 rows and
columns. Initially it would be patterned with zeroes throughou. The command
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Freeal2l-al43
would give the foll owing pattern:

36
4 7
58
80

if this command was foll owed by

Fix Al42

the parameter spedficaionwould become:
36
40
58

6 080

Insymmetric matrices, referencesto theupper triangle aelegal; anything doneto an element
one side of the diagonal (A;) is dore to the aorrespondng element onthe other side (A;).

Equate Command

Syntax:
Equate <matrix> {<gp>} <r> <c> <matrix> {<gp>} <r> <c> ...} }

In order to constrain matrix elements to equal one ancther, the Equate command may be
used. Itsprimary purposeisto spedfy equality constraints among parameters, bu it can be
used to copy anumeric value from one matrix element to ancther. Thereisabig conceptual
diff erence between the first element spedfied in alist and the others. The fixed o free
status of thefirst element is given to the remaining elementsin thelist, bethey fixed or free.
If thefirst element is afreeparameter, the same parameter is copied to the other elements.
If the first element is fixed, then awarning message is printed, to the dfed that al other
elements will befixed. Thevauein thefirst element isthen passed to the other elements
inthelist. TheEquate command may be used within matrices, or aaossmatricesin the same
group,or acdossmatrices in dfferent groups. Note that it isnot possbleto use Fquate to
make an immovable dement (such as an element of a matrix spedfied as type 1D, or an
off-diagonal element of a diagonal matrix) into afreeparameter.

For example, given matrices edfied in group lasfollows:
Begin Matrices;

A Symm 3 3 Free

B Full 2 4

I Identity 6 6
End Matrices;



Buil ding Models with Matrices 75

the foll owing Equate statements are legal:

Equate A1 1B(2,2) B 14

Fquate B2 1A 123

Equate BANANA 2 2 APPLE 1 11

However, the following areill egal:

Fquate A1 1122 (9

Equate I55B 11 (b)

Fquate A12C11 (¢

Fquate A4 4B11 (d)

Equate A22G4 11 (e

They fail because: | isan identity matrix (a& b), C has not been spedfied (c), A does not
have 4 rows and columns (d), and it is not posgble to refer to an element of a matrix in a
later group(e).

For large models with many constraints it is often more dficient to usethe Specification
command, or to seek repetiti ve structuresin the model matricesand use partitioned matrices
(seeChapter 1), or both. The kronedker product can be particul arly useful when spedfying
repetiti ve partitioned matrix structures.

Spedfication Command

Syntax:
Specification <matrix name> a { b {c}}
where a, bandc are nat necessarily distinct integers.

Note that different syntax is required in multi ple fit mode:
Specification <group number> <matrix name> a { b {c}}

Foll owing the Specification command, the user supdies alist of numbers that variesin
length acording to the dimensions and type of the matrix (seeSedion 4.4. If a zrois
supdied, it indicaes that the dement is to be fixed. Non-zero elements refer to free
parameters, andthe same number refersto the same parameter. For example, the ommand
Specification A

123000

000321

would be gjuivalent to the statements

Pattern A
111000
000111
Equate AT1A26

Equate A1 2A25

Equate A13A 214

The second method kecomes tedious and error-prone in large models.

Note that the Specification andPattern commands canna be mixed in the same Mx job.
Thisisfor safety, becaise the oppatunities for user error are toolarge.
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4.6

Boundary Command

Syntax:
Bound Tow high <parlist> / ALL

where<parlist>isalist of matrix dementsor alist of parameter Specification numbers.
Boundary Constraints

By default, parametersto be estimated are cnstrained to li e between -10000and +10000.
These limits can beincreased or deaeased with the Bound command. Boundhries may be
supdied more than orcefor any parameter, bu only the last Bound statement referring to a
particular element is used. For example the statements

Boundary -1 1 all

Boundary .35al46alb6

would change the limitsfor al parametersto -1 and +1, except thase (if any) in elementsA
14 6andA 1 5 6. TheT0 syntax may be used to spedfy ranges within matrices, so that
Boundary 0 1 X 1 2 to X 16

would make parametersin all elementsbetween X 1 2 andX 1 6 lietake values between
zero and ore. If the Specification command has been used to spedfy parameters in
matrices, then it may be eaier to refer to parameters with these numbers in a Bound
command. Thus

Specification A

0246

2067

Boundary 0 10 2 4

would be permitted asamethod d boundng parameters 2 and 4to li e between zero andten.

Linear and Non-Linear Inequality Constraints
Seepage 49 onthe use of constraint groups to implement inequality constraints.

Label Matricesand Seled Variables

Labeling Matrices

Syntax:
Labels Row/Column <matrixname> <label-1ist>

After matriceshavebeen dedared, whether withinaMatrices or Algebra sedion,labelsmay
be given for the row or column (or both) of any matrix that has free éements. Matrices
withou free éements(Zero, Identity, Identity|Zero, andZero|ldentity andUnit) are
never displayed so labels provided for these matrices will not appea onthe output. The
|abel-li st containslabels sparated by blanksor carriagereturns. Labelsmust nat beginwith
a number and may be upto 8characterslong More charaders can bereal, bu Mx only
regardsthefirst eight as sgnificant, and will only print the first eight on the outpui.

Labels may be given for the observed data by isauing al abel command kefore the matrices
command, as described in Sedion 4.6.
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| dentification Codes

Syntax:
ICodes <numlist>

where <numlist>isa number list of length NInput vars.

The ICodes command may be used in conjunctionwith the VL or redangular datato spedfy
anonstandard structure of the expeded covariancematrix. It may bethought of asaseled
command which operates on the predicted covariance matrix and predicted mean vedor.
By default, the identification codes for the covariancematrix are1 2 3 4... For example,
if NInput_vars=3 then by default the expeded covariance matrix has a structure like this:

2 3

< B

1

w N P

12 V2
13 C23 V3

0O 0O

From which structure it would be possbleto read datain a Vi ength fil e that had forms:

1

1.1

1

2 .2

1

3.3

2

12.1.2

2

13.1.3

2

23 .2.3

3

123 .1.2.3
andany of these wuld bereordered. For example, if thefoll owing VLength datawereinpu:
2

31.9 .4

MX would generate a ovariance matrix of the form

3 1
3 V3
1{C, V,

if means are being estimated, they will also be seleded appropriately, in this case seleding
Mg,M, from aninitial vedor (M, M, Ha)-
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The ICodes command all ows the default order 1 2 3... to change, making an infinite
variety of inpu data vedors readable. The repetition d a number is most useful for
pedigrees of variable structure, for example, if the model generatesthe mvariancebetween
two parentsandtwo chil dren, datathat come from famili eswith morethan two chil dren may
be handed. In this case, the ICodes command would be:

ICodes 1 2 3 3

Andthusthe mvariance matrix looks like this;

F M C G,

F Vﬁ

M [ Cry Vi

Cl CFC CMC Vc

C, Cec Cuc Cec Ve

If the following VLength data were read:

3

333 .2 .4 .6

then Mx would crede the foll owing covariance matrix for this data structure:

C1 CZ C3
C1 VC
C2 CCC VC
C3 CCC CCC VC

The fad that two 3s have been given all ows the generation o the expeded covariance
matrix between any number of individuals with code 3.
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5 Optionsfor Fit Functionsand Output

What you will find in thischapter

Detail s onthe built-in fit functions

How to use other fit functions

How to increase or dearease the output
Confidenceintervals and standard errors

Power cdculations

Changing the technicd optimization parameters
Fitti ng submodel s with multi ple fit

Writing matrices to files

Saving jobs and results to binary files

How to crede RAMpath dagrams

51 Optionsand End Commands

Syntax:

Options <multiple> <fitfunc> <statout> <optimpar> <write> End \

where <multiple> starts multi ple fit mode, <fitfunc> spedfies thefit function, <statout>
requests statistical output, <optimpar> requests optimization paameters, and <write>
spedfies the filenames to write matrices to fil es

The Option lines of MXx alow the spedficaion o a wide variety of keywords and
parameters to control the type of fit function used, the amourt of output requested, file
names for result matrices, and many others. TheOption command daes nat signify the end
of a group, so several Option lines may be given within any group. Option commands
shoud follow Model or Covariance statements, and shoud na be followed by Bound
commands. To endagroup,theEnd Group; commandis used, for example,

Option Mxa=Afile.out
Option RSiduals NAG=30
End Group;

5.2 Fit Functions; Defaults and Alternatives

Thefit functionfor agroupis automaticdly set acarding to the type of datathat are read.
For example, if covariance matrices alone ae read, the default is maximum likelihood.
Table 5.1 showsthe default fit functions seleded by Mx for agiven datainpu. Note that
the method may change between groups. If afunctionthat does not asymptote to 2 (e.g.
RU or RM) isused in any group,then noy? probability is given at the end o optimization.
In general, the default fit functionisappropriate for the datasupdied. Mx doesnat provide
for atering the inpu data from one type to ancther (e.g. converting a covariance matrix to
a orrelationmatrix). However, it isasimpletask to write aseparate Mx script to makethis
conversion.
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Tableb.1 Default fit functions acarding to the type of datathat have been read.

Inpu data Default fit function
CMatrix, KMatrix or PMatrix ML

CMatrix, KMatrix or PMatrix with ACov AWLS

CMatrix, KMatrix or PMatrix with AVar DWLS

Rawdata, VLength or Rectangular RM

CTable ML,

CMatrix - covariance matrix; KMatrix/PMatrix - correlation matrix; ACov - asymptotic
covariance matrix; Avar - asymptotic variance matrix; Radiata - Raw data; VLength -
variable length data; Rectangular - redangular file; CTable - corntingency table;

ML - maximum likelihood AWLS - asymptotic weighted least squares;, DWLS - diagonal
weighted least squares; RM raw maximum likelihood ML - maximumlikelihoodassuming
bivariate normal li ability.

Standard Fit Functions

Thereareseveral goodintroductionsto the propertiesof diff erent fit functions(e.g Joreskog
& Sorbom, 1989 Bentler, 1989. Controversy existsabou therelative meritsof thediff erent
methods in the faceof assumptionviolations (seeKaplan, 1990, andit seenswisefor the
user totrea thisinformationin the sameway asawhitewinefromtheLoire (drink yourgest
available). Currently, maximum likelihood (ML) is showing robustnessin the face of
violations of the assumptions of multi variate normality. Asymptotic weighted least squares
(AWLYS) generally performs better in the presence of kurtosis, but can be & least as badly
aff eded by skewnessas ML. Seehowever, simulationwork by Rigdonand Ferguson(1997)
for problems with tetrachoric correlations.

In the foll owing sedions, the cdculation d the fit functions is described, where Sis the
observed covariance matrix, X isthe expeded covariance matrix, tr(A) indicaesthe trace
of and |A| indicaes the determinant of matrix A. Sand X are of order p and df is oneless
than the sample size used to cdculate S.

Least Squares LS
The urnweighted least squares fit functionis caculated by the formula:

LS - df (&22)2)

Maximum Likelihood ML
When model fitti ng to covariance matrices, the maximum likeli hoodfit functionis

ML = df (In|2] -In|S| +(tr (SZY) -p)
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andthisis modified when bah amean vedor x andamodel for the means  (seepage 68)
are supdied, this functionis augmented to become

ML,y = df (N2 -In|S] «(tr SZY) -p LA (X W)/ 2 (x -p) +1)

In order for the ML fit function to be cdculated, £ must be positive definite. If, during
optimization, the determinant of Sislessthan 10°°then Mx usesapenalty function a other
methods to try to stee optimization badk towards a positi ve definite solution. The penalty

functionis
e 209 27:8)

If the starting values begin optimization in this region, it is difficult for the optimizer to
escgpe this high dateau, so ogtimization may fail. To avoid this, starting values may be
revised or the LSML fit function may be used to oltain sensible starting values for ML
estimation. LSML first fits the model by least squares, then by maximum li kelihood.

10°30-[g]
12

Generalized least squares GL S
Generali zed least squaresisbased onthe principlesof Aitken (193435); seeBrowne (1974

_Q1y2
GLS:tr(I S )

GL S operates for covariance matrices only.

Asymptotic weighted least squares AWLS
Asymptotic weighted least squares foll ows from work by Browne (1982, 198%and ahers.
Effedively, the variance @variance matrix of the observed summary statisticsis used as a
weight matrix W. Formally thefit functionis

AWLS = &E&E(S Z)Wu k|(5k|

i-1j-1 k=1 1-1

By default, if a correlation matrix (KMatrix or PMatrix) is supgied, the dove formulais

modified to
n i-1 n k-1 o
AWLS *22‘ = g( i i) Ijkl(Sd Zkl)+ -z
i=2 j=1 k=2 | =

Theterm 2 (1-3.)? exists to constrain the dements of the diagonal to equal one. If the
2 1
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model failsto med this constraint, thefit functionisinflated. Mx printsthe anourt of the
fit functionthat is dueto thiscomponrent of model mispedficaion. Thesecndtermisnat
cdculated (and daes not contribute to the fit function) if the keyword Diagonal appeason
the Option line.

An aternative gproad to maintaining a diagonal of ones would be to standardize the
expeded covariance matrix before cdculating the AWLSfit function. Mx doesthisif the
keyword Standardize appeasontheOptions line. Some caewith starting valuesisneeded
here, becaise the solutionfor a model standardized in thisway is necessarily not unique.
A third approach would be to use anorinea constraint group (see Sedion 3.5 that
constrains the diagonal elements to equal unity.

Diagmally weighted least squares DWLS

Diagonall y weighted | east squaresisasimplified form of AWL Sfor usewithlargeproblems
where the AWLS matrix becomes unmanageadly large. It is a cmpromise with less
statisticd validity than AWLSandshoud be used with caution. Select doesnaot work with
DWLSto dscourageitsuse. Thefit functionfor DWLSis smply:

DWLS = 3" 3(S; -Z)Wyj(S; -3

i-1j-1

whereW |sad|agonal matrix of variances of the observed covariances. Y 12‘4 _, isreplaced
by Y. ZZJ ln‘ a correlation matrix is suppied as data

Least Squares- Maximum Likelihood LSML

Thisfit function starts with unweighted least squares, and takes parameter estimates from
the solution as garting values for maximum likelihoodestimation. This methodis useful
toavoid havingto spedfy starting valuesthat generate apositi ve definite wmvariancematrix.
Its disadvantageis that it consumes more computer time than would supdying appropriate
start values and using ML alone. Though more robust to bad starting values, it is not
infalli ble; optimizationis not (yet) an exad science

Maximum Likelihood Analysis of Raw Continuous Data

When we have asample of complete multinormal data, the summary stati stics of meansand
covariance matrices are sufficient statistics to oltain maximum likelihood estimates of
parameters (seethe keyword ML above). It iscommon pradiceto remove from analysisany
subject that hasmisgng data. However, there ae occasionswhen misgng dataresult inthe
omisson of asignificant amourt of datafrom analysis. If the number of types of missng
datais small, for example, if there ae redly two sub-popuations, ore that has data on 6
tests, and orethat lads dataonthe fourth test, then covariancematrices could be cmmputed
separately for thetwo popuations and model sfitted separately to the diff erent groups. Mx
isflexible, allowing diff erent groups to have diff erent numbers of inpu variables.

This multi-group approacdh breeks down if the number of sub-popuationsislarge andthe
sample size for ead group istoo small to estimate apositi ve definite observed covariance
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matrix (this happensif the number of variables exceals the number of subjeds). For this
reason, a number of methods of handing incomplete data ae provided in Mx. RM (raw
maximum likelihood isredly an extension d the multigroupmethod described above, but
cdculatestwicethe negativelog-likelihood d thedatafor ead olservation. Theprocedure
foll owsthetheory described by Lange d al., (1976. If there aek observed variablesinthe
set, the normal probabilit y density function o an olserved vedor x; is

Iznzlimzexp 7% (Xi - “i)lz_l(xi - “i)

where X is the popuation covariance matrix and |, is the (column) vedor of population
means of the variables, and |Z| and Z* denote the determinant and inverse of the matrix X,
respedively. Thefit functionisthus:

RM = -klog(2m) +log|Z|+ (X, - 1)’ Z 1 (x;- ;)

If there ae incomplete data, a separate group could be mnstructed for ead dff erent type
of datavedor. Thiscould berather tedious for anything beyondavery few types of vedor,
so Mx provides a seaond, more general approach. The gproach is to crede avariable
lengthrecord or redangular fil e (page44). Thisall owsthe useof the ebovefit function, bu
with avariable length observed vedor x. The gpropriate mean vedor 4 and covariance
matrix X isautomaticdly creaed by Mx for eat observation. To save on computer time,
thecreaion d pandZ (andimportantly ) isdoreonly if avedor is diff erent in structure
from the previous vedor. Therefore, considerable CPU-time saving can be obtained if
sorted data ae suppgied to Mx. An example script can be found on pge 132. Individua
likelihoods and related statistics can be written to afile (seep. 10J).

Maximum Likelihood Analysis of Raw Ordinal Data

Data anaysis proceeds by maximizing the likelihood undr a multivariate normal
distribution model. In order for thisto take place it is necessary to suppy both a matrix
formula for the mvariances and a matrix formula for the thresholds. The cvariance
formulamust result in a matrix which is sjuare, symmetric @ and hes the same order asthe
number of variables read in from the Ordinal file. The threshald statement must yield a
matrix which has the same number of columns as the number of variables being analyzed.
The number of rows of this matrix must match the maximum category of al of thevariables
in the datafile, or if the highest statement is used, the largest value in the agument to this
command. This maximum category of all i s known as maxca.

For avedaor of observed ardinal resporsesy = (Yo, Vi, -.- Ym), thelikelihoodis computed by
the expeded proportionin the wrrespondng cdl of the multivariate normal distribution.
Let the highest category of variablej be denoted by hj, and et ti; denote the " threshdld of
variablei. The expeded propationin the cdegories of y is computed as:

g tyzqu tym+1¢(x), dx
t, J2, Jim,

8 |f the matrix is not symmetric, orly the lower triangle will be used, bit the use of non-symmetric
predicted covariance matrices is confusing and is not generally encouraged
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wheret, j= - =, t,= =, and ¢(x) isthe multi variate normal probabilit y density function (pdf),
given by
2=l 2 exp| -3¢, 1) 270, - )

inwhich Z isthe predicted covariance matrix of the variables, |, isfixed at zero for all i.

Toillustratein atrivariate case, the two veaors of observations
021
and
1
would have likelihoods computed as:
52 [ 2200025, i, by

2, Jt

If the third variableis binary, then the upper limit onintegrationwould bet3, = «. For the
semndvedor of observations, two measures are misgng so the likelihoodsimplifiesto the
single integral:

[ ;f2¢(><3), dx,

Tests of mean dff erences between popuations may be caried ou by adding a vedor of
constants to ead row of the threshald matrix. This may be is easiest to do via the
Kronedker product of a 1x mvedor of freeparameters with a Unit column vedor that has
maxca elements. This formulationis a parametric model for the distribution d ordinal
resporses. The parameters of the distribution are those that influence the predicted
thresholds T and the predicted covariance matrix X.

An espedaly important feaure of the maximum likelihoodraw data gproach is that it
provides anatural method d handling misgng datathat are so commonin longitudinal and
multi variate studies. In theory, data that are missng completely at randam (MCAR) or
missngat random (MAR) are crredly handed by thisprocedure andwill provideunbiased
maximum likeli hoodestimates as long as the asaumptions of the multivariate normal hald
(Little& Rubin, 1987. Thisisentirely analogoustothe cmntinuows case. Failuretoinclude
casesthat contain misgng observationscanlead to biasin parameter estimates. Elimination
of such cases will amost alwayslead to larger confidenceintervals onall parameters.

A further advantage of the raw data goproach is that it provides a natural way to exploit
moderator variables, using the definiti onvariable methods described on ges33and 133.
At thistimeit isonly possbleto model binary variablesvia path dagramsin the graphicd
interface becaise the GUI always generates a script with asingle vedor of means, and nd
amatrix of threshalds. Inthe cae of binary variables, the methodwill work from diagrams
becaise Mx treasthe mean and threshold statements equivalently.

An example of data analysis using this method may be found onthe Mx website &
http://views.vcu.edw/mx/examples/ordinal
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Contingency Table Analysis

Mx has a built-in fit function for the maximum-likelihoodanalysis of 2-way contingency
tables. Two-way tables are inherently bivariate, so we ae implicitly fitting a 2x2
covariance matrix to the cdl frequencies, and estimating a tetrachoric or paychoric
correlation. Figure5.2showsa contour plot of the frequency distribution d two variables,
Xand.

Surface and contour plots of bivariate normal
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Figure 5.2 Contour plot showing abivariate normal distributionwith correlationr=.9
andtwo threshaddsin the X andY dimensions.

For anr by ¢ contingency table, there ae asaumed to ber-1 row thresholdsand c-1 column
thresholds that separate the observed caegories of individuals.

Twicethe log-likelihood d the observed frequency datais cdculated as:

InL .. = 2n. Ini——
cr i=1 j=1 ! n__pij
where n; isthe observed frequency in cell ij, p; isthe expeded propationincel ij, and n,
is the total number of observations in the contingency table. The expeded propationin
eat cdl is cdculated by numericd integration o the bivariate normal distribution,
performed by subroutine BIVNOR (Schervish, 1984. For example, the expeded propattion
with individual 1 lying in the cdegory between threshod a and threshold b and with
individual 2 lying in the cdegory between threshold ¢ and threshold d would be given hy:

Ly, = fab [ S (v,v,), dv,dv,

where ¢ denotes the multinormal probability density function, and v, is the liability of
individual I.

Sincen; isnot estimated, the number of degrees of freedom associated withanrxctableis
rc-1. If zcdlshave nat been ascertained, the number of degrees of freedomisreduced by
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z. In order to compute an approximate x? statistic, twicethelikelihood d the dataunder the
model is subtraded from the likelihood d the observed data themselves, cdculated as

C o
INLero = 2 Y 2nijln{ﬂ}
i n

r
i=1 j=1

Seepage 69for detail sonspedfying threshads for model sfitted to contingency table data,
and pege 122for an exampl e script.

Non-random Ascertainment

Mx will automaticdly cdculate anascertainment corredionwhil e cdculatingthelikelihood
of theincompletely ascertained data. For example, if we ascertain asample of 60 probands
from hospital records and examinetheir spouses, of whom 10are observed to have the same
disorder, then a 2x 2 contingency table would be supdied as foll ows:

CTable 2 2
-1-1
50 10

The -1 inthe cdlsof thefirst row indicaethat subjedswere nat ascertained in these aess.
Thelikelihood d the observed data must be correded for the incomplete ascertainment of
subjedsfor study. Effedively, aswe omit certain classes of person from observation, so
the likelihood d observing the remaining individuals increases. Mathematicdly this is
expressed by dividing the likelihood ty the propation d the popuation remaining after
ascertainment. We obtain thisby subtrading the propartionsin all omitted classesfromthe
total popuation popation (i.e. 1.0. In ou example, asauming that individual 1 hasto be
above threshald, the propartion amitted is

A - ftm f_tf(vl,vz),dvzdv1 + f_tm ft "B (v, dv,dv,

wheret isthe ascertainment threshold, v, and v, are theliabilit y values of individuals 1 and
2, and ¢ is the multinormal probability density function. The likelihood correded for
ascertainment would simply be the likelihoodas obtained before, bu divided by 1-A.

User-defined Fit Functions

If the User-defined keyword appeas onthe Options line, the fit function for the groupis
to be user speafied. In order for thisto be the case, the matrix expresson given as the
model (Constraint or Covariance command) must evaluateto ascalar. There aeno aher
rules. Any of the auttomaticdly defined fit functionsLS, ML, AWLS etc. could be spedfied
as user-defined functions, bu it isgeneraly lessefficient to doso. User-defined functions
are recommended only when the built-in functions are not suitable. A simple exampleis
shown on fage 140.
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5.3 Statistical Output and Optimization Options

Inthis Sedionwediscuss ®me of the statisticsthat Mx will compute automaticaly. While
the range of these statisticsislimited, the user shoud ndethat it isquite straightforward to
compute his or her own functions of the parameters or goodress of fit statistics using
cdculation groups (see Sedion 3.5for syntax and page 112 for an example script that
computes gandardized estimates).

Standard goadnessof-fit output

At the end d optimization, Mx prints the value of the fit function,which is asymptoticaly
distributed as x? when the fit function is maximum likelihoodand the data ae wvariance
matrices. Similar distributional propertiesarethought to hdd for generali zed least squares,
the contingency table likelihoodfit function, and asymptotic weighted least squares. For
these functions, the degrees of freedom and probabilit y are printed, together with Akaike's
Information Criterion, computed as y?-2df. The degrees of freedom are caculated as the
number of observed statistics minus the number of observed statistics plus the number of
non-linea constraints. To be judged agoodfit, models shoud have anonsignificant chi-
squared (p>.05). With large samplesizes, significant chi-squared can comefromrelatively
trivial fail ures of the model; alternative comparativefit statistics (seep. 94 can be used for
these cases. Confidenceintervalsonthe goodressof-fit x? may be printed using optionCl.

User-defined fit functions and raw data maximum-likelihood are not treaed as being
distributed as chi-squared, so the probability is not computed by default. However,
sometimes the user-defined fit-function will i ndead be gpropriately distributed, so the
option ISCHI can be used to override this default behavior. An example where thiswould
beappropriateiswheretheval ue of twicethelog-li keli hoodfrom asaturated or super model
-2InL had been entered as a user-defined fit functiongroup,and ogion d used to adjust the
degrees of freedom to the diff erence between the models.

RMSEA

Root Mean Squared Error Approximation, @ RMSEA (Steiger & Lind, 1980 McDonald,
1989, isagoodressof-fit index which isautomaticdly printed by MXx after fitting amodel
that resultsin a di-squared goodressof-fit. The primary aim of this gatisticisto provide
ameasure of fit that isrelatively independent of sample size. Esentiadly, it isaweighted
sum of discrepancies. Vauesbelow .10indicae agoodfit, and values below .05indicae
avery goodfit. Theindex iscomputed by

RMSEA = /(x?-df)/n / df

for the single groupcase. Inthe multigroup case, adifferent formulaisused. Foll owing an
unpubi shed manuscript by Dr. Steiger, theindex iseff edively multi pli ed by the square-root
of the number of groups, when the same number of variablesisanalyzed in eat group. Mx
al so makes adjustmentsfor diff erent numbersof variablesbeinginead group,althoughthis
is highly experimental at present. For now, it is aufficient to nae that the multigroup
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RMSEA iscorreded fromtheoriginal formula. RM SEA shoud beviewed skepticdly when
the groups do nd have the same number of variables.

Suppressng Output

Syntax:
Option NO Output

Before describing ways in which Mx ouput can beincreased, we note the valuable option
NO_Output which prevents printing of all output for agroup. Thisoptionshoud be used by
the emlogicdly-minded as often as possble. Even the environmentall y unconscious may
findit useful to reducetheir disk-spaceusage, bu some caition shoud be taken na to use
it toofrequently sincevaluableinformationthat could reved misgedfication o the model
might be missed.

Appearance

Syntax:
Option NDecimals=n or Width=m
wheren isthe number of dedmal places, andm is the number of columns

By default, Mx will print most numberswiththreedeamal places, or use exporential format
if there aevery smal or very large numbersinamatrix. Y oumay overridethisdefault with
the NDecimals keyword, where NDecimals=n will print n dedmal places of predsion.

Mx prints up to 80-columns of output, which is siitable for viewing on an 80-column
display or legal/l etter/A4 paper (in partrait orientation) with a10cpi font. Thisdefault may
be changed with the option Width=m where m is the number of columns desired. At the
present time, the NDecimals andWidth parameters canna be used together (sorry).

Residuals

Syntax:
Option RSiduals

The Rsiduals keyword requests that the observed matrix, the expeded matrix, and the
residuals (ohbserved - expeded) be printed. In cdculation and constraint groups, only the
expeded matrix is printed, since neither has any data. Note that RSiduals isthe only way
to print the observed matrix, and may be espedally useful if the Select command hes been
used. When means have been supgied, the observed and expeded mean veaors will be
printed. Expeded meansalso appea when using maximum likelihoodwith raw data. With
cortingency tables, Mx prints the observed and expeded frequencies and their diff erence

Under asymptotic weighted least squares Mx prints two types of residual matrix. First, it
prints the unweighted dfference between the observed and expeded correlations or
covariances. Seond, it prints a weighted residud matrix, which is cdculated from the
formula (seepage 80):
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n k-1

WReg = EZ(S‘U' _“;:j)wi;,il (S ~Z) *%(1 %)

k=2 1=1

The sum of these dements gives the fit function for the group (negleding any penalty
function for the diagonal of a @rrelation matrix). Note that not al elements will be
positive, but that their sum is necessarily nortnegative. Quite often, inspedion d the
weighted residuals will give a teaer ideaof the caise of model fail ure than consideration
of the unweighted residuals alone.

Adjusting Degrees of Freedom

Syntax:
Option DFreedom=n
wheren isthe adjusted number of degrees of freedom

If a aorrelation matrix is read instead of a @variance matrix, the number of statistics
provided is usually lessthan when variances are dso given. The amourt of the reduction
ininformation depends onthe structure of the data. For example, if MZ and DZ twins have
been measured on ore variable, there ae four statistics that are necessrily equal (the
variances of twin 1and twin 2in the MZ and DZ groups). Only one of these statistics
confersany information (it scd esthe size of the MZ and DZ covariances), so threedegrees
of freedom arelost, and DF=-3 shoud be placeal ontheOptions line. For multivariate twin
data, DF=-3k shoud be used, where 3k isthreetimes the number of variables onwhich eah
twin is measured. We can extend this ideato m groups of pedigrees of size n, eat
measured onk variables, in which case df=-k(mn-1) shoud be used.

Power Calculations

Syntax:
Option Power=alpha,df
wherealphaistheprobalilityleve of thetest, anddf arethe associated degreesof freedom

Power cdculations are useful in awide variety of contexts, espedally experimental design
and getting grants. For theoreticad work, orce one has established that it is posdble in
principleto deted an effed, anatural questionis‘what are the chances of finding it with a
sample of x many subjeds? The usua way to approach this problem is to simulate data
with aset of fixed parameter values, cdled the‘true model’. Thesesimulated data aethen
used asdatato which afalse model isfitted. Thefalse model would normally be asubmodel
of the true model, for example with a parameter fixed to zero instead of the value used in
the true world model. The size of the dchi-squared from this false model, given the sample
size, indicaesthe power of thetest. The Power command wsesthis x* and the user-suppi ed
significancelevel o (alpha) and degrees of freedom (df) to compute the power of the study
torged the hypathesis. Inaddition,the program computesthe total sample size that would
berequired, given the aurrent propation o subjedsin ead group,to rejed the hypothesis
at various power levels from .25to .99. Seepage 108for an example gplicaion d this
methodin the mntext of the dasdcd twin study.
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Confidencelntervals on Parameter Estimates

Syntax:

Interval {@val} <Matrix element Tist>

where val isthe desired percentage of the confidenceinterval;

e.g. Interval @80 will give80% confidenceintervals (default is 95%)

This command requests confidence intervals on any matrix element. Usually one would
request an element that is a free parameter, bu it is also pasdble to request confidence
intervals on computed matrices that are functions of free parameters. This allows
confidenceintervalsonindred effedsin structural equation modelsto be mmputed. Mx
computes the upper and lower confidence intervals by conducting an ogimization in n
parametersfor to find ead interval. For long-running jobs involving many parameters or
cpuw-intensivefitti ng functions, optimizationstofindconfidenceintervalson parameterswill

gredly increase the time taken to exeaute thejob. Therefore, we recommendthat Intervals
be requested oy when the script isthought to be working corredly.

Therelative meritsof likelihoodbased confidenceinterval sversus dandard errorsbased on
asymptotic theory of the parameter have been discussed by Meeker and Escobar (1995) and
Nede & Miller (1997. In lrief, standard errors have the alvantage of being fast to
compute, but have several undesirable statisticd properties. First, the distribution d the
parameter estimate is assumed to be normal, whereas we have shown that it may not be
(Nede & Miller, 1997. Semnd, t-statistics computed by dividing the estimate of a
parameter by its gandard error are not invariant to transformation (Nede & al., 1989
Kendall & Stuart, 1977. That is, if we estimate a? instead of ain amodel, then atest of
whether parameter ais ggnificant will not give the same answer. For positive values of a
thelikelihoodratiotest that a=0will givethe same answer, regardlessof whether the model
was parameterized in terms of a or a2 Third, mindessuse of the standard error can give
norsensicd values if the parameter estimate is bounded. For example, a residual error
variance may betheoreticdly bounded at zero, yet the standard error would imply lessthan
zero as a lower bound onthe estimate. With bounad parameters, Mx will not report
infeasible valuesfor the likelihoodbased confidenceintervals, althoughit shoud be nated
that confidenceintervalsthat rest on parameter boundries may na yield adeaease in fit
correspondng to the required amourt for the interval in question. Finaly, the only major
drawbadk to confidenceintervalsisthe alditional computationtimerequired. Ascomputers
bewme faster and chegoer, this problem will diminish.

The procedure that MX uses to find confidence intervals is described in Nede & Mill er
(1997). The central ideaismove aparameter asfar away aspossblefromitsestimate & the
optimal solution (i.e., its maximum likelihoodestimate (MLE) if thefit functionis ML) for
agiven amourt of increase in the fit function. For example, 95% confidenceintervals are
found by moving the parameter away from its MLE to a place where the fit function
increases by 3.84chi-squared unts. Note that this moving away is dore with all the other
parametersinthe mode still freeto vary. Obvioudy, stepping away fromthe MLE in small
increments and re-optimizing would be very cpu-intensive, requiring m optimizations over
n-1 parametersfor an mstep seach onan n parameter model. Instead, Mx usesamodified
fitting functionthat isafunction d the differencein fit between the MLE solution and the
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new solution,andthevalue of the parameter. Esentialy, the parameter (or matrix element)
in question is minimized (lower bound or maximized (upper bound subject to the
constraint that thefit of themodel isa cetain amournt worsethan at the maximum likelihood
solution. Aswe know, optimization is not an exad science, and there can be problemsin
conduwcting the seach to find the confidence intervals, just as optimization may not be
succesdul when fitting amodel. To combat this problem, MXx uses two main strategies.
First, if NPSOL returned an IFAIL of 4 (too few iterations) or 6 (Hesdan acairacy
problems) then it will repeat the optimizationfrom thefinal point, upto amaximum of five
times. Seoond,the user is natified of such dfficulties with the Lfail and Ufail columnsin
the output. For example, ouput might be

Confidence intervals requested in group 3
Matrix ETement Int. Estimate Lower Upper Lfail Ufail
A1 1 1 95.0 0.6196 0.5575 0.6879 00 00
c 1 1 1 95.0 0.0000 0.0000 0.0000 12 03
E 1 2 3 9.0 0.1735 0.1541 0.1961 00 65

Inthis casethe atemptstofindthe Cl'sonA 1 1 1 appea successul. Tofindthelower Cl
onC 1 1 1, two refitting attempts were made, and the final solution receved IFAIL=1
which is probably the right answer. For the upper Cl onC 1 1 1, three refits were
undertaken, and the solutionwas IFAIL=0, again probably the right answer. Thelower CI
onkt 1 1 1, seamsto befine, bu the upper one definitely shows sgns of difficulty, with 5
atemptsandstill anIFAIL of 6. Onewould dowell to chedk thisupper confidenceinterval
by removing the Interval commands andfixingthevalueof E 1 2 3 at.1961to seewhether
thefit function deteriorated by 3.84chi-squared urits. It iseasy to perform such atest for
afreeparameter in matrix element £ 1 2 3, using the statement

Drop @.1961 E 1 2 3

just before the End d the last group.

It ismore difficult to test the acairacy of the Cl if the matrix isa cmomputed matrix. Inthis
case, ore way to doit would beto add a constraint groupto the job, like this:

Constraint group to fix E 1 1 1 at .1961
Constraint
Matrices = Group 1
K full 11
Z full 14
End Matrices:;
Matrix K .1961

Matrix 22323 ! to get the submatrix of E from element 2,3 to element 2,3
Constraint \part(E,Z) = K ;
End Group

Again, the deaease in fit due to this constraint shoud be examined by subtrading the x?
goodressof fit foundin the unconstrained model from the fit foundwith the nstraint in
place Shoud the difference not be gproximately 3.84, o might wish to establish the
confidenceinterval manually by trying diff erent values than .1961in Matrix K (or Drop).
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Standard Err ors

Syntax:
Option SErrors

Thisoptionis being phased ou in favor of confidenceintervals (seep. 90.

Mx uses the numericd estimates of the hesdan matrix of the parameters to provide
approximate standard errors on the parameters. While it gives estimates consistent with
those of other programs under a variety of condtions, this optionis nat reliable. Under
these circumstances, standard errors may appea much too small. The sameistrueif the
function precisionis low (which may happen if, e.g., the fit function involves numerica
estimation of integrals). The problemis sometimes overcome by atering the aror function
predsion parameter, withOption Err=value. By default it is st closeto madchine acaracy;
setting it to 1'° (or larger) may corred problems with totally unredistic estimates of
standard errors.

Standard errors do nd work corredly when nonlinea constraints are impaosed with

constraint groups.

Again, asesdng significance and standard errorsdiredly through changesin themodel can
provide more robust estimates. It ispaossbleto get Mx to ddng thisfor you, but it requires
some subtle programming (see example cnf.mx). We hope to implement the methodin a
more user-friendly way soon.

Randomizing Starting Values

Syntax:
Option THard=n
wheren isa pasitiveinteger

If the parameter THard is %t using TH=n where n is a positive integer, Mx will generate
randam starting valuesfor all parameters and attempt to fit the model again. This attempt
islikely to fail if no bound are speafied, because the default boundaries are -10000and
+10000,andtherandam valueswill berandam from within these bound. Most optimizers
fail if starting values are too far away from the fina solution; MXx has sown greaer
tolerancethan LISREL in this resped.

Testing Identification

THard can be very useful when exploring the identification d structural equation models.
If data ae generated with particular fixed values for the variable parameters (0,), then
optimizationfrom adiff erent set of starting values(®,) shoud give asolution d theoriginal
values (0,). Thiscan be tested a number of times using THard. If sensible bounds are not
given for the parameters, thistest will | ikely fail because ®, will not beremvered. The key
to underidentificaionis finding a solution that fits perfedly, bu with a parameter vedor
other than ©,. If thisis the cae, the hypothesis that the model is identified has been
falsified. Findinganumber of solutionsat ®, does nat prove identification d the model, it
merely increases the suppat for the hypothesisthat it isidentified. Of course, this method
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doesnat show that the model has been spedfied correctly; a mmpletely mispedfied model
may beidentified. SeeOption check below for another method.

Automatic Cold Restart

Syntax:
Option THard=-n
wheren isa negativeinteger

During optimization, an estimate of the covariance matrix of the estimated parametersis
constructed. Sometimes, this covariance matrix is inacarate and ogimization fails to
converge to the corred solution, a problem that is usually flagged by an IFAIL parameter
of -6. Option TH=-n can beusedtorestart the optimizationn timesformthe arrent solution,
but with the parameter covariance matrix reset to zero.

Jigdling Parameter Starting Values

Syntax:
Option Jiggle

Prior to optimization, parameter start values can be jigged. Jigding replaces eath
parameter start value x, with x+.1(x+.5). Thisoptioncan beuseful to nudge Mx away from
asadd e point which can betroubdesomewhen using numericaly estimated derivatives. An
example of a mmmon sadd e point iswhen parameters are started at or very nea to zero,
and the estimates x and -x have the same dfed onthe functionvalue. Such situations are
commonin structural equation models which feaure quadratic formsin their expedations;
the ACE genetic model is one such example.

When used in conjunction with a negative THard parameter, jigdling will occur ead time
the refit isattempted. This may cause estimatesto drift fromtheir initial values, espedally
if the parameter concerned has no effed on the fit function.

Confidencelntervals on Fit Statistics

Confidence intervals on the di-squared statistic ae obtained using a single parameter
optimization method (Steiger and Lind, 1980. The 100(1-a)% confidence limits for the
norcentrality parameter lambda of a x? df,lambda distribution are obtained by finding the
values of lambda that placethe observed value of the Chi-square statistic a the 100 (a/2)
and 10(q1-a/2) percentil e paints of ax? df,lambda distribution.

Y ou can chedk the MX results with the useful link at

http://www.stat.ucla.edu/cd cul ators/cdf/ncchi 2/ncchi2cd c.phtml

by entering the dhi-sq and df andthe plevel (.95 a .05) to findthe upper and lower bounds
for 90% confidenceintervals.

These confidenceintervals onthe chi-squared are used dredly to compute the wnfidence
intervals for the AIC and RMSEA statistics.
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Comparative Fit Indices

Syntax:
Option Null=<y?>,<df>
where y? anddf are the statistics of a nul model

Users may supdy the results of fitting a null model (usually a simple diagonal model of
variances, bu others are possble) with the nul1 command which will extend the output in
the foll owing way:

Fit statistic Estimate

Tested Model fit >>>>>>>>>>>>> 4.73426

Tested Model df >>>>>>>>>>>>>> 4.00000

Null Model fit* >>>>>>>>>>>>>>  1563.94400

Null Model df* >>>>>>>>>>>>>>> 6.00000

Normed fit Index >>>>>>>>>>>>> 0.99697
Normed fit Index 2 >>>>>>>>>>> 0.99953
Tucker Lewis Index >>>>>>>>>>> 0.99929
Parsimonious Fit Index>>>>>>>> 0.66465
Parsimonious Fit Index 2 >>>>> 0.02940
Relative Non-centrality Index> 0.99953
Centrality Index >>>>>>>>>>>>> 0.99961
*User-supplied null-model statistic

They are cdculated as foll ows:

NFI =(F-F)/F, BentlerandBonett,1980
NFI, = (F\-F)/(F-df;)
TL =((F/df) -(F/df))/((F/df,)-1.0) TuckerandLewis,1973
PFI = (df/df )NFI Mulaiket.al.,1989
PFI, =2NF1(df,)/(p(p-1))
RNI = ((F-df,) -(F;-df))/(F-df,) McDonaldandMarsh,1990
Cl =exp(-.5((F;-df;)/N)) McDonald,1989

whereF, andF; arethegoodressof-fit (chi-squared) statisticsrespedively obtained uncer
the Null and Tested model, and which have df and df; degrees of freedom. N isthe total
sample size (over al groups) and p isthe number of freeparametersin the model. Tanaka
(1993 discusses their relative merits, and Williams & Holahan (1994 conduwcted an
empiricd study which gave suppat to the use of AIC in many contexts. Marsh et al. (1997
favor TLI asa comparative fit statistic. Clealy, nofit statisticisided in all situations.

Automatically Computing Likelihood-Ratio Statistics of Submodels
Syntax:

Option ISSAT or
Option SAT=y?,df
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When fitti ng multi ple model sto the same data, it iscommonto want to know the diff erence
in fit, the difference in degrees of freadom, and the probability associated with these
differences. Option Issat spedfiesthe aurrent model asamodel against which subsequent
modelsfitted in the same runwill be compared. Thismodel does not have to be saturated,
in the sense of having afreeparameter for every observed statistic; it merely hasto be a
supermodel against which subsequent submodelswill be mmpared. In addition,thefitting
function being used shoud be asymptoticdly x? distributed, o be a-2 log-likelihood.Most
Mx fit functions are of thistype, but user-defined fit functions may naot be.

Sometimesfitting asaturated model at the start of asequenceof analysesiscomputationally
burdensome. Asan alternative, the goodressof-fit chi-squared and degrees of freedom of
a supermodel may be diredly entered using Option SAT. All subsequent models will be
compared against this supermodel.

Chedk Identification of Modée

Syntax:
Option Check

By default, Mx does nat test identificaion o models via examination d the rank of the
hessan matrix of parameter estimates. Option check doesthis, but it shoud be noted that
theresultscan give ather false paositives or false negatives. Whilethisisto some extent true
of programs that use exad derivatives, it is more true of Mx which uses numericdly
estimated derivatives. When Option check isinvoked, Mx computes the egenvalues and
eigenvedors of the hessan matrix, and uses this information to assesspotential areas of
underidentificaion. As dated elsewhere - espedally in Joreskod's early papers - a better
procedure is to attempt to find alternative sets of parameter estimates that give an equally
good fit to the data (which is proof of underidentification). Mx provides Option TH=to
fadlitate this proof. Identification should be tested on theoreticd grounds whenever
possble (seetexts by Nede & Cardon (1992, p.10% Bollen (1992) and Peal (1994 for
discusson d these methods.

Changing Optimization Parameters

Mx uses NPSOL, written by Walter Murray and Philip Gill at Stanford University, to
perform numericd optimizationin the presence of general li near, non-linea and boundry
constraints. Mx attempts to chocse suitable values for the parameters that control
optimization, taking into acount the number of parametersto be estimated, the numerica
predsion of the function value, and so on. However, the enormous variety of types of
optimization tasks that can in principle be requested with Mx means that the automatic
seledion of these parametersis not alwaysided. In addition, difficultiesin ogimization
may require examination d the optional output that NPSOL can generate. Mx all owsthe
user to print these data and to alter the parameters as needed. There ae dso fadliti esfor
automaticdly performing some of the solutions of optimization dfficulties suggested inthe
NPSOL manual (see aso routine EO4UCF in the NAG manual).

In general, parameters have been set for NPSOL onthe caitious sde, so that many of the
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warning messages about IFAIL parameters being nonzero are spurious. This sams better
than being misled by the program giving the wrong answer withou warning.

®  |FAIL=1 (code GREEN), most likely, the corred solution.

®  |FAIL=4 (code BLUE - it ran out of breah), for which the Tterations=n may be used.

®  |FAIL=3(code RED - bad news) occursin connedionwith constraints, namally they
have been misgedfied so that they are impasgble to satisfy. Sometimes they are
possble to satisfy but the starting values make it difficult for the optimizer to find a
regionwhere they are satisfied. IFAIL=3 can dways be aured by making certain that
the starting values stisfy all nonlinea constraints, the ommandFix all placed nea
the end o the script is usefu in this regard.. Printing the residuals in the @nstraint
groups often helps.

m  |FAIL=6 (also code RED - take nate) isthe most tricky. Sometimesit occurs because
of ill -condtioning of the Hesdan, which can be verified by examination d the NAGDUMP
output file (seepage 96). A solution here may be to use the TH=-n which requests
optimization from the airrent ‘solution’” with the Hessan reset to the identity matrix,
ntimes. On ather occasions, it may appea becaiuse of insufficient numericd predsion,
yet still be & theright place If aparameter in your model isnat identified, IFAIL=6is
quite likely.

Appropriate choiceof starting valuesisalwaysrecmmended. Many users gart parameters
at zero becaise thisis the default value of freematrix elements. In pradice Mx attempts
to avoid so ddng by starting any parameter in the range -.01to .0lat .01. The user can
asgst this processwith the Jiggle optionto further nudge the parameter value avay from
aposshle sadde paoint at zero (seepage 93). But best of al is areasonable guessat the
parameter estimates that satisfies any nonlinea constraints.

Setting Optimization Parameters

NAG=n, Default: NAG=0

If this gatement appeas onthe Options line, the technicd output from NPSOL is printed
in afile cdled NAGDUMP.OUT. The value n controls the Major Print Level, the higher the
number the more verbase the output file. Minimum output is written with NAG=1 and
maximum is written with NAG=30. MX printstheinitial and final value of the function. If
option DB is present (seebel ow) more detail ed information onthe parameter estimates will
be printed. Mx rescdesall functionsto 1.0to asdst general optimization, so the function
value printed by NPSOL isapropation d thisinitia value.

Feasibili ty=n, Default = .00001

Will control the Nonlinea Feasibility Tolerance i.e. FEAS=r d efines “the maximum
acceptable absolute violationsin linea and nodinea constraints at a‘feasible’ paint; i.e.,
alinea constraint is considered satisfied if itsviolation daes not excead r” (NAG, 1990.
It has no effed if there ae no norinea constraints.

Iterations=n, Default = 100
Controls the number of major iterations. Shoud beincreased if IFAIL=4 error messages
occur.
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Linesearch=r, Default = .9 if no nonlinear constraints are present, otherwise, .3
Lineseach tolerance.

Optimality=r, Default = 1™® where n is approximately In(F, ) where F, is the function
value at the starting values
Sets the optimality tolerance, a parameter controlli ng the acaracy of the solution.

Stepsize=r, Default = 10000
Infinite step size.

Function precision=r, Default = 1™® where n is approximately In(F; ) where F, is the
function value at the starting values

Spedfiesfunctionpredsion. Ingeneral this shoud be set at alower value than therequired
predsion d the solution.

Obtaining Extensive Debug Output: DB=1

If the parameter DB=1 is st on the output line, together with NAG=n wheren is greder than
zero, additional informationwill be written to the NAGDUMP .OUT file. For ead evaluation o
the function to oltain the gradient of the parameter vedor, the fit function value for eat
group, the total fit function, and the values of all the parameters are printed. On ead
evaluation of the functionto oltain the constraint functions, the values of al the parameters
andthe mnstraint functions are printed. Note that the order of the parametersin the veaor
corresponds to the order used by NAG during optimization and nd the order of parameter
spedficdions given by the user, or printed by Mx. Note dso that using this option for
problems with more than a few parameters can result in enormous NAGDUMP .OUT files.
Examination of the first and last few iterations can be very helpful in identifying errant
parameters whose extreme values may be causing floating point errors that make the
program crash.

5.4 Fitting Submodels: Saving Matricesand Files

One of the powerful feadures of MX isitsability to start again whereit left off. Anexample
of this has aready been described on pages 92 and 95above, where repeated attempts to
optimizearemade d@ther fromthe current solution a fromrandamized starting values. Here
we describe how repeaed fits may be made from the solution, all owing for changesin the
model. Thiscan bedone manualy, writi ng out matricestofil es, or automaticdly withinthe
samerun, wingtheMultiple command, a fromasaved hinary file. For largeproblems, use
of binary files can save alot of time.

Fitting Submodels using Multiple Fit Option

Syntax:
Option Multiple

If the keyword Multiple isincluded ontheOptions line, the next Mx inpu fileis assumed
to have aspedal form. It will consist of asingle group,ending with an Options line. The
only commandsthat may be used under theMultiple optionare Specification, Pattern,
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Matrix, Value, Start, Equate, Fix, Free and Options. Data may not be changed,
matrices may not be alded, and the matrix formulaespedfied in the Covariance or Means
statement canna be dtered. At sometimein the future, these restrictions may be lifted.

There is no group structure to the inpu strean following an Multiple command; al
modifications to the model must refer to matrices with anumber identifying the particular
group in which the matrix is to be found. This changes the usua form of the
Specification, Matrix and Pattern commands to include agroup spedfication, which
must be placad diredly after the keyword, before the letter indicating the matrix. Thus
Specification A

becomes

Specification 2 A

if A was pedfiedin group 2. As an example of the use of this command, consider the
simplefador model presented on ge 39. We could test the significanceof the wvariance
of the two variables by fixing parameter #2to zero. Obviously this could be adieved by
modifying the entire inpu file and running it separately, bu the following will fit both
modelsin ore run.

SimpTe MX example file
Data NGroups=1 NObservations=150 NInput vars=2
CMatrix

1.2 .8 1.3
Matrices

A Full 21

D Diag 2 2
Model A*A" + D /
Specification A 10
Specification D 0 3
Options Multiple RSiduals

End
Specification 1 A1 2

End

Considerable computer time can be saved using Multiple, since the solution of a model
often has parameter estimateswhich are doseto those estimated under nested model s of the
sametype. Ingeneral, werecommendfitting models garting with the simplest, andworking
up to more complex models. When working from complex to simple, the Drop command
(seenext sedion) can beuseful. If you have morethan asingle set of nested modelstotedt,
saving the general model inan Mx binary savefil e (seepage 99) can save mnsiderabletime
and eff ort.

Multi ple fit mode has always made revising the model and refitti ng from eali er solutions
easy to do ty changing the parameter contents and values of matrix elements. It is now
possble to change matrix formulae ad aher charaderistics of agroup, wsing the #group
3 syntax. Optionsor matrix formulaesupgied after this command would apply to group 3.
For example, suppase that after fitting a model --- perhaps one that took daysto run--- we
might discover that we had accidentall y forgotten to request residuals from group 5. If, in
anticipation o this or similar errors, we had issued a save mmmand:
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< usual model commands >
Option Multiple
End I<- end statement of last group

Save incase.mxs
End

It would be posgbleto retrieve the solution, add the gpropriate option, and re-run:
Title - revise options to see residuals

Get incase.mxs

fgroup 5

Option RSiduals

End

This type of strategy may be useful to oktain additional fit-statistics for null-model
comparisons.

Dropping Parameters from M odel

Syntax:

Drop {@value} <parnumlist><elementlist>

where<parnumlist>isalist of parameter numbers asused intheSpecification command,
and@value isan ogiond valueto fix at, andMatrix dement list isali st of matrix d ements

Quite often, equality constraints between parameters lead to model spedficaionswith the
same parameter in many diff erent matricesor several groupsor both. Fixingall occurrences
of the parameter with the Fix parameter can betime-consuming anderror prone, so theDrop
command may be used instead. By default, all parameters whose spedficaion nunber
matches a number in the list following the Drop command will be fixed to zero. For
example:

Drop 5 8 7

Drop 11 to 20

Drop X 2 13

would fix to zero al occurrences of parameters5, 8, 7, 1tthrough 20andall occurrenceof
whichever parameter is gpedfiedinelementX 2 1 3. Notethat matrix addresses canna be
used in this command. It ispassble to supdy an ogtional value to the drop command, so
that for example

Drop @.5 2 3

would fix al occurrences of parameters 2 and 3to 0.5.

Reading and Writing Binary Files

Syntax:

Save <filename>

Get <filename>

where <filename> is the name of the file to be saved or retrieva - the exension mxsis
recommended
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When the multiple fit option is implemented (see page 97) the entire inpu job
spedficaions, data, and estimates may be stored in binary format for rapid retrieval and
estimation in subsequent fitting of submodels. Note that Save must follow the entire job
spedficaion. Thusfor example the foll owing would save the results of fitting the model,
together with the complete model spedfication,in thefile acesave.mxs:

! Mx commands for first job precede this line
Option Multiple

End

Save acesave.mxs

! First command in multiple fit number 1

Fix all

End

The Fix ALL command simply stops the optimizer from trying to improve on the arrent
solution by fixing all the parameters. To usethisbinary save filein another commandfil e,
we ould use the following:

Title - using a binary file

Get acesave.mxs

Free A1 23

End

By retrieving abinary file, Mx isautomaticaly in the Multi ple fit mode, so modificaions
can be made to the model and a further series of hypotheses tested. If Get isused in a
separate job, atitle line is required before this datement. Normally, parameter estimates
after model fitting are stored, bu if it is desired to save the user's garting values, it is
possble to set the number of iterationsto zero, useMultiple, and Save the starting val ues.

Writing Matricesto Files

Syntax:
MXa= <filename>

where a isthe single-letter name of the matrix to be written, a one of 4 %M %P %V

Mx will write matrices to files with this command. Thefirst line has header information,
including the group number, the matrix name, type and dmensions. The matrix elements
are then written in FORTRAN format (6D13.6). Thisfileformat isfully compatible with
LISREL, so matrices output by Mx can beread in as darting values for LISREL and vice
versa (seepage 71). If the matrix name is %E, the expeded covariance matrix will be
written to the file. If the matrix nameis %M, the expeded mean matrix will be written to a
file. For groups with raw maximum likelihoodfit functions, %P will write aseries of
columnsof informationabou thelikelihood d individual pedigrees(seepage101). Finally,
it isalso passbleto save aVL file, with the 2V keyword. Whilethisisnot normally useful
(since it would reaede the original data file), following the seled command it can be
advantageous. Subsequent reading of the seleded data can be faster than reading thewhde
dataset and performing seledion again.
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Formatting and Appending Matrices Written to Files

Syntax:

Option Append

Option Format=(F)

whereF isalegal FORTRAN format

The default 6D13.6 format used by MX to write matrices to files may be changed with
Option FORMAT. It is best to consult a FORTRAN language reference manual for full
details onlegal formats. In brief, the general form for numbersis Fw.d where F indicates
floating pant, w is total width, and d is the number of digits after the dedmal point. A
comma delimited li st of formats may be provided. Spaces may be inserted with the syntax
nx wheren isthe number of spaces provided, and parentheses may be used to repea format
spedfiers. For example, 6(F5.2,2¥ would be used to write numbers in 5 spaces with 2
dedmal places, andfoll owed by 2 spaces. After writing 6 such numbers, anew linewould
be used to write subsequent numbers.

Option Append causesall matricesto be gopended to existing fil es of the samename, if they
exist. Theformat isonly written orce, if the file does not previously exist.

Writing Individual Likelihood Statisticsto Files

Syntax:
MXZP= <filename>

A valuable feaurefor identifying outliers and passble heterogeneity in raw dataisto save
theindividual li kelihoodstatisticsto afile. These datamay subsequently beinspeded with
other software to produce half-normal plots and the like. The syntax for this foll ows the
writing of amatrix to afile, bu we separate it because of the cmplexity of the output. For
eadt vedor intheredangular or V. datafile, MX outputs eight columns of data:

1. -2InL thelikelihoodfunction for that veaor of observations

2. thesguareroat of the Mahalanohis distance, Q = (x- )’ 7 (x- L)

3. aetimated z-score Z = ((Q/n; )NL/3) - 1 + 2/(9n;)) (9n, /2)*(.5) where n; isthe number
of individualsin the ith data vedor

4. the number of the observationin the adive (i.e. post seledion) dataset. Note that with
seledion this may nat correspondto the position d the vedor in the datafile

5. the number of data pointsin the vedor (i.e. the family sizeif it is a pedigreewith ore

variable per family member)

the number of timesthelog-li kelihoodwasfoundto beincd culable during optimization

000 if the likelihood was able to be evaluated at the solution, a 999 if it was

incaculable

8. themodel number if there ae multi ple model s requested with the NModel argument to
the Dataline

N o

Results from all raw data groups are written to the same file (the beginning of another
groupsinformation can be seen from a dhange in the cae number). Thethird itemin the
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list isespedally useful for deteding outli ers when there ae missng data, being relatively
independent of the number of data pointsin the vedor in question (Johnson & Kotz, 197Q
Hopper & Mathews, 1982. Of two formulaefor computing the z-score (the other being Z,
=(2Qi)*- (2n; - 1)) wefoundZ to be much closer to anormal distribution. Half-normal plot
of this gatistic shoud (for multivariate normal data) show a dose fit of eat data point to
its expeded value.

Ancther valuable role for this output isto pinpant particularly nasty outliers that prevent
optimization from succeeling, usually causing an IFAIL=-1 problem. Seaching through
thesaved individual li kelihoodfilefor the string ' 999' (nate the leading andtraili ng blanks)
will find cases where the likelihood could nd be evaluated for the particular set of
parameter estimatesin use.

Creating RAMpath GraphicsFiles

Syntax:
Draw= <filename>

Structural equation models may be specified very simply in terms of threematrices. The
firstmatrix S, is ymmetric andspedfiesall thetwo-headed arrows between all the variables
(bothlatent and olserved) inthediagram. Thesemndmatrix A, isasymmetric andspedfies
al the single-headed arrows between al the variables in the model. Causal paths from
variable | to variable j are spedfied in element A;. For example, apath from variable 1 to
variable 4 would be represented in element (4,1) of this matrix. Thethird matrix F, isused
to filter the observed variables from the latent variables for the purpose of model fitting.
The development and applicaion o thisapproad is sucdnctly described in the RAMpath
manual (McArdle & Boker, 1990.

Iff® youspedfy amodel with thesethreematrices, F, A and S, then RAM path graphicsfil es
may be written and saved to afile with the Draw command. Thisfile, largely consisting of
aRAMpath inpu_model command, may be used asinpu for RAMpath to draw adiagram
of your model to view or to produce pulicaion-quality output on a postscript printer.
Conversely, the ommmand save_mx in RAMpath will generate an Mx script. The Mx
graphicd interface currently in apha-test, provides an aternative to using RAMpath.

% |ff with two f's means ‘if and orly if’
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6 Example Scripts

What you will find in thischapter

m  Example scripts
m  Brief description o the models and methods being used

There are very many diff erent ways of setting up any particular model in Mx. Aswith any
programming, thereisa compromi se between compaanessandcomprehensibilit y that is st
by the individual user. The most compad files are often the least comprehensible; the
longest ones may be prone to typographicd errors, and can be very boring to check.
Judicious use of comments can make for a brief but comprehensible inpu file.

6.1 Using Calculation Groups

The examplesin this sdion do no fit models; matrix formulae ae simply evaluated and
the results are printed.

General Matrix Algebra

Suppase we wish to find the inverse of the symmetric matrix:

1
23 2.
34 45 3.

Thefollowing inpu file culd be aeaed:

TitTe: Inverting Symmetric 3 x 3 example file
Calculation NGroups=1
Begin Matrices;

A Symm 3 3
End Matrices:;
Matrix A

1.

.23 2

.34 .45 3.
Begin Algebra;

B=A";
End Algebra;
Options MxB=inverted.mat

End

The output matrix inverted.mat contains the nine dements of the matrix B, which isthe
inverse of A.
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Asortative Mating ‘D’ Matrix

Multivariate phenaotypic asrtative mating (Van Eerdewegh, 1982, Vogler, 1985 Carey,
1986Philli ps et a., 1988 Fulker, 1989 leads to a predicted covariance matrix between
husbands and wives phenotypes of the form:

R, ‘RHD’RW
R,DR,| R

Thusthe matrix D can be obtained fromR,, *"MR,, ", whereM =R,, DR,, , the off -diagonal
block of correlations between phenctypes of husbands and prenatypes of wives. The
following Mx input file will cdculate matrix D.

#define nvar 3
Calculation of full D matrix, 3 phenotypes husband & wife
Calculation NGroups=1
Begin Matrices;
A Symm nvar nvar I Covariance of wives' variables
B Symm nvar nvar ! Covariance of husbands' variables
C Full nvar nvar ! Covariance between husband & wife variables
End Matrices;
Matrix A
1
4.9
3511
Matrix B
1.2
A2 1.
.3 .47 .9
Matrix C
40102
.05 .3 .12
.22 11 .5
Begin Algebra;
D= A™*C*B™ ;
End Algebra;
End

The relevant part of the output fil e looks like this:
CALCULATION OF FULL D MATRIX, 3 PHENOTYPES HUSBAND & WIFE
Matrix A
1.0000
0.4000 0.9000
0.3000 0.5000 1.1000
Matrix B
1.2000
0.4200 1.0000
0.3000 0.4700 0.9000
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Matrix C
0.4000 0.1000 0.2000
0.0500 0.3000 0.1200
0.2200 0.1100 0.5000
Matrix D
0.4302 -0.2854 0.1497
-0.3471 0.7770  -0.5237
0.1361 -0.4908 0.7829

Pear son-Aitken Seledion Formula

Thisexampleisalittle more complex. In 1934 Aitken generali zed Peason's formulaefor
predicting the new mean and variance of variable when seledion is performed on a
correlated variable. Aitken'sdelightful paper showshow seledion onavector of variables,
X, leadsto changesin the covarianceof correlated variables X that are not themselves
seleded. If the origina (pre-seledion) covariance matrix of Xg is A, and the original
covariancematrix of X isC, andthe cvariancebetween X, and X isB, thentheoriginal

matrix may be written
A|B
Bl C

if selediontransforms A to D, the whole new matrix is given by:

D ‘ DA'B
BAD |Cc-B(Al-ADA B

Likewise, if the original meansare (x_:x,)’ and seledion modifies x, to X,, the vedor of
means after seledionis given by:

X, +A B (XX

where (x.-x ) is the deviation d the means of the seledted variables from their original
values.

#Ngroups 1
Pearson Aitken Selection formulae
! Idea is to give original means and covariances, and get new ones

Calc

Begin Matrices;

A Symm 2 2 ! Original covariances of selected vars

B Full 2 2 ! Original covariances of selected and not-selected vars
C Symm 2 2 ! Original covariances of non-selected vars

D Symm 2 2 ! Changed A after selection

S Full 21 ! New means of selected vars (assume initially zero)

N Full 2 1 ! Original means of not-selected vars

End Matrices;
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Matrix A 1. .7 1.

Matrix B .6 .42 .42 .6

Matrix C 1. .352 1.

Matrix D 1. .4 1.

Matrix N 3 4

Matrix S 2 1

Begin Algebra;
V= D| D*A™*B_ ! Note that underscore above is UNDER operator

B'*A™*D| C-B"*(A-A™*D*A")*B ; ! not A with a horizontal bar over it

M= N + AT*B*S ;

End Algebra;

End

The new covariance matrix and mean vedor are printed as the matricesV and M.

6.2 Mode Fitting with Genetically Informative Data

The examplesinthis £dion demonstrate dementary use of Mx tofit modelsto datainthe
form of variance-covariance matrices.

ACE Genetic Moddl for Twin Data

If data ae wlleded from identicd or monazygotic (MZ) twins and from fraternal or
dizygotic (DZ) twins, it is posdble to estimate parameters of a model that includes the
effeds of additive genes (A), shared o family environment (C) and randam or unique
environment (E). Thismodel is shownin Figure 6.1as a path dagram.

Figure 6.1 ACE genetic modd for twin data. Path model for additi ve genetic (A),
shared environment (C) and spedfic environment (E) effeds on prenatypes (P) of pairs of
twins(T1landT2). The parameter o isfixed at 1 for MZ twinsand at .5for DZ twins. All
latent variables have avarianceof 1.0.
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Theapproadh used here generalizesto the multi variate cae, by increasingnvar and twonvar
and the datafiles. Heah et al. (1989 all ow for phenotypic interadion, bu thisisleft for
alater example (p. 114

#Ngroups 3
#define nvar 1 ! number of variables
#define twonvar 2 I two times nvar

! ACE model fitted to the Heath et al (1989) data on alcohol consumption
G1: model parameters
Calc
Begin Matrices;
X Lower nvar nvar Free
Y Lower nvar nvar Free
7 Lower nvar nvar Free
W Lower nvar nvar Fixed
HFull 11
QFuUlT 11
End Matrices;
Matrix H .5
Matrix Q .25
Begin Algebra;
A= X*X'
C= Y*Y" ;
E= 7*%7" ;
D= WW"
End Algebra;
End

genetic structure

common environmental structure
specific environmental structure
dominance structure

G2: Monozygotic twin pairs

Data NInput-vars=twonvar NObservations=171
Labels Alc tl Alc t2

CMatrix

1.28 0.766 1.194
Matrices= Group 1
Covariances A+C+D+E | A+C+D
A+C+D | A+C+D+E /
Options RSiduals
End

G3: Dizygotic twin pairs
Data NInput vars=twonvar NObservations=101
Labels Alc_tl Alc t2
CMatrix
1.077 0.463 0.962
Matrices= Group 1
Covariances A+C+D+E | HOA+C+Q@D _
HEA+C+Q@D | A+C+D+E /
Start .6 All
Options Multiple RSiduals
End
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Power Calculation for the Classcal Twin Study

Our next example uses the same model as in the precaling sedion, bu in this case we
cdculate the power of the dasdcd twin study to deted the dfeds of common
environmental variation. The particular case we wish to examine is where the true
popuation variance mmprises 20% additi ve genetic, 30% shared environment, and 50%
random environment variance, but we fit amodel withou shared environment variation to
simulated MZ and DZ covariance matrices. This example is discussd in some detail in
Nede & Cardon(1992; here we reproducetheir results with a simple script.

There are two stagesto the power calculation. First, fixed values of the parametersa, c and
earegiven,andatwo-groupMx script simply cdculatestheexpeded covariancesunder the
model, and savesthemto twofil es, mzsim.cov and dzsim.cov. Thenext problem (preferably
inthesameinpu file, though thisisn't essential) fitsamodel of additi ve genetic andrandam
environmental varianceonly. The complete inpu file looks like this:

! A C E model for power calculation

#Ngroups 3

! Step 1: Simulate the data

! 30% additive genetic  (.54772=.3)
! 20% common environment (.44722=.2)
! 50% random environment (.70712=.5)
G1: model parameters

Calc
Begin Matrices;
X Lower 1 1 Fixed ! genetic structure
Y Lower 1 1 Fixed ! common environmental structure
Z Lower 1 1 Fixed ! specific environmental structure
HFull 11

End Matrices;
Matrix X .5477
Matrix Y .4472
Matrix Z .7071
Matrix H .5

Begin Algebra;
A= X*X'
C= Y*Y" ;
E= 7*%7" ;

End Algebra;

End

G2: MZ twin pairs
Calc NInput vars=2
Matrices= Group 1
Covariances A+C+E | A+C
A+C | A+C+E /
Options MXZE=mzsim.cov
End
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G3: DZ twin pairs
Calc NInput vars=2
Matrices= Group 1
Covariances A+C+E | HEA+C
HeA+C | A+C+E /
Options MXZE=dzsim.cov
End

! Step 2: Fit the wrong model to the simulated data
#Ngroups 3
G1: model parameters
Calc
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Fixed ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
HFull 11
End Matrices:;
Matrix H .5
Begin Algebra;
A= X*X'
C= Y*Y' ;
E= 77"
End Algebra;
End

G2: MZ twin pairs

Data NInput vars=2 NObservations=1000

CMatrix Full File=mzsim.cov

Matrices= Group 1

Covariances A+C+E | A+C
A+C | A+C+E /

Option RSiduals

End

G3: DZ twin pairs
Data NInput vars=2 NObservations=1000
CMatrix Full File=dzsim.cov
Matrices= Group 1
Covariances A+C+E | HEA+C
HOA+C | A+C+E /

Start .5 All
Options RSiduals Power= .05,1 ! .05 sig Tevel & 1 df
End

Therelevant part of the output isat the end, where we seethat for the spedfied sample sizes
of 1000 irsead o MZ and DZ twins, the x? goodressof-fit is 11.35,asfound ly Nede
& Cardon(1992:
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Chi-squared fit of model = 11.349
Degrees of freedom = 4
Probability = 0.023

Akaike's Information Criterion = 3.349

Power of this test, at the 0.0500 significance level with 1. df is 0.920572
Based on your combined observed sample size of 2000.

The following sample sizes would be required to reject the hypothesis:

Power Total N

.25 290.
.50 677.
.75 1223.
.80 1383.
.90 1852.
.95 2290.
.99 3238.

Because we requested that this datistic be treated as a x? for 1 degree of freedom for the
purposes of cdculating power at the .05level of significance (Power=.05, 1), the output
gives the power of the test given the particular sample sizes (and MZ:DZ sample size
propartions), followed by the sample sizes that would be required to oltain certain
commonly used levels of power. The power is quite high (.92) with 2000 p@irs. The
required sample sizesto read certain power levelsfrom .25to .99are dso shawn.

RAM Spedfication of Model for Twin Data: Graphics Output

Hereisatwo groupexample, aphenatypic interadion PACE model (seepage 114for more
detail ), spedfied using the threematrix approach of McArdle & Boker (1990. Detail s of
this method,and the syntax of the Draw command can be found on jpge 102.

The title for the diagram is taken from the titl e of the groupin the Mx inpu file, and the
labels for the variable ae taken from labels of the columns of the S matrix. The draw
commandsin thisfil e producetwo fil es, mx.ram and dz.ram. | dont like the way RAM path
drawsinteradion ketween the phenctypes, but thereisa cetain irrefutablelogic in having
causal arrows always going out the bottom of avariable andinthetop. You can easily edit
the RAMpath file to get rid of the @ signs if you like. Note that spedfying models ala
RAMpathisdidacticdly very clea but computationall y inefficient, sincethe inverse of the
maximally dimensioned A matrix isrequired.

! Phenotypic interaction PACE model, Heath 1989
! Demonstration of RAM specification and output
Group 1: MZ twins
Data NGroups=2 NInput vars=2 NObservations=171
CMatrix Symm File=alcmz.cov
Matrices
S Symm 8 8
I Iden 8 8
A Full 8 8
F Zlden 2 8
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End Matrices;

Matrix S

1

O O O = OO

0

OO O/ OO

OO OO O

OO OO

O O O

1
0
0

0
0

Label row a al
Label col a al
Label row s al
Label col s al

Specify A

0

_ O O O O O
RN OO O OO
O W OO OO o

0

Start .6 A

0

0

0

OO OO O oo

1

OO O O O OO
~N WO OO OO oo

2

PO OO OO OO

1

0

cl el a2 c2 e2 pl p2
cl el a2 c2 €2 pl p2
cl el a2 c2 €2 pl p2
cl el a2 c2 e2 pl p2

OB OO OO oo

A73

I This is where the parameters are

Covariances F*(I-A)7*S*(I-A)"'*F'/
Options RSiduals Draw=mz.ram

End

Group 2: DZ twins
Data NInput vars=2 NObservations=101

CMatrix Symm File=alcdz.cov

Matrices
S Symm 8 8
1 Iden 8 8
A Full 8 8 = Al
F ZIden 2 8

Matrix S

1

o O

5001

O O O O

Bound -.9

1
0

OO O =

1

OO OO

OO OO

1
01
00
00
9

.9

Bound 0 512
Covariances F*(I-A)"*S*(I-A)""*F'/
Options RSiduals Draw=dz.ram

End

0
0
9

0
3
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Cholesky Demmposition for M ultivariate Twin Data

Any pasiti ve definite matrix may be transformed to a product of alower triangular matrix
anditstranspose, i.e.

Y =1L

This Cholesky decompasition is unique for a given pasiti ve definite matrix Z, except for
transformations of sign oktained by multi plying by diagonal matrices with elements %t to
-1 or 1. It hasasimple graphic representation as a path diagram (Figure 6.2) wherethefirst
latent facor loads on al variables, the seoond onall variables except thefirst, the third on
al variables except the first two, and so on.

Fl FZ
b b b
11 b21 b31 22 b3 33
Yl Y2 Y3

Figure 6.2 Chalesky or triangular factor model for threevariablesY1,Y2and Y3

In multi variate genetic analysis, a Chalesky (triangular) decompasition o separate genetic
and environmental covariance matrices is posgble. Thus the alditive genetic, shared
environment and randam environment facors in the simple ACE model (Figure 6.1) have
amultivariate counterpart where the phenotypes P, and P, are replaced by vedors of
observed phenatypes, andthelatent variablesA, C andE arereplaced by vedorsof fadors.
The path coefficients a ¢ and e ae replacad by triangular matrices of fador loadings
acording to the Chaesky decomposition. Our aimisto produce ascript that isvery essy
to modify when the number of variables analyzed changes.

Here we use an inpu file that cdculates the genetic, shared and randam environmental
fadorsinthefirst groupthat generates genetic, shared and random environment covariance
matrices It isthen asimple matter to form the expeded covariancematrices for twin data
as partitioned matrices containing linea combinations of these matrices. It is then
simplicity itself to fix a parameter to zero, as only one charader hasto be changed from a
1toa0. The exampleincludes datafrom individualswithou cotwins (group 2, aswell as
MZ (group 3 andDZ (group4) twin pairs. Estimates from amodel such asthis depend on
the size of the observed variances, and can be difficult to interpret. Estimates of the
propartion of variance and covariancedueto ead source can be obtained using the dement
division ogerator (%) (group 9.
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! Trivariate Cholesky 'Independent Pathways' model

! Data are Extraversion, Neuroticism and CESD Depression
#Ngroups=b

#Define nvar 3

#Define twonvar 6

#Define nunmatched 449

#Define nMZ 456

#Define nDZ 357

G1: model parameters
Calculation NGroups=5
Begin Matrices;
X Lower nvar nvar Free ! genetic structure
Y Lower nvar nvar Free ' common environmental structure
/ Lower nvar nvar Free I specific environmental structure
HFull 11
End Matrices;
Matrix H .5
Start .6 All
Begin Algebra;
A= X*X'
C= Y*Y'
E= 77" ;
End Algebra;
End

! Now get to the actual data, and use the results of calculations
G2: Unmatched twins

Data NInput vars=nvar NObservations=nunmatched

CMatrix Symm File=endun.cov

Matrices= Group 1

Covariances A+C+E /

Option RSiduals

End

G3: MZ twins with cotwins

Data NInput vars=twonvar NObservations=nM/
CMatrix File=endmz.cov

Matrices= Group 1

Covariances A+C+E | A+C

A+C | A+C+E /
Option RSiduals
End

G4: DZ twins with cotwins
Data NInput vars=twonvar NObservations=nDZ
CMatrix File=enddz.cov
Matrices= Group 1
Covariances A+C+E | HRA+C _
HeA+C | A+C+E /
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! By using the Kron operator every element of G is multiplied by .5
Option RSiduals
End

G5: Calculation of standardized solution
Calculation
Matrices= Group 1
I Iden nvar nvar
Begin Algebra;

P= A+C+E;

G= \sqrt(1.P)*A;

K= \sqrt(I.P)*C;

L= \sqrt(I.P)*Et;
End Algebra;
Option RSiduals
End

PACE Model: Redprocal Interaction between Twins

Figure 6.3 shows a path dagram similar to the ACE model for twin data. Thereisnow a
path (1) from the phenatype of a twin to that of his or her cotwin. This is redprocd
interadion between dependent variables. It can easily be shown (see gpendix D) that a
matrix representation d this process isto usetheformulation(l -B)*, where B isamatrix
whose element by, represents the caisal effeds of variable k on variablej. Inthis case, the

parameter | has been bounekd to lie between -1 and 1,thowgh thisis not necessary.

—
-

A 4
—
N

Figure 6.3 PACE model for phenatypic interadion between twins. Path for additive
genetic (A), shared environment (C) and spedfic environment (E) eff edson plrenctypes (P)
of pairsof twins(T1and T2). Pathi modelsdired phenatypic f edsof atwin on hisor her

cotwin. The parameter o isfixed at 1 for MZ twinsand at .5 for DZ twins.
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!Phenotypic interaction model, fit to Heath 1989 data.
#Ngroups 3
G1l: model parameters
Calc
Begin Matrices;
X Diag 1 1 Free
Y Diag 1 1 Free
Z Diag 1 1 Free
P Full 2 2
I Iden 2 2
HFull 11
End Matrices;
Specify P
04
40
Matrix H .5
Start .6 All
Bound -.99 .99 4
Bound 0 5123
Begin Algebra;
A= X*X'
C= Y*Y'
E= 77" ;
B=(I-P)";
End Algebra;
End

genetic structure

common environmental structure
specific environmental structure
interaction parameters

G2: female MZ twin pairs

Data NInput vars=2 NObservations=17/1
Labels alc tl alc t2

CMatrix Symmetric File=alcmz.cov
Matrices= Group 1
Covariances B &(A+C+E | A+C _
A+C | AHC+E) /

Option RSiduals

End

G3: female DZ twin pairs
Data NInput vars=2 NObservations=101
Labels alc tl alc t2
CMatrix Symmetric File=alcdz.cov
Matrices= Group 1
Covariances B &(A+C+E | HOA+C _
HeA+C | A+C+E) /
Option RSiduals
Options NDecimals=4
End
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Scalar, Non-scalar Sex Limitation and Age Regresson

The model and datain this dion were taken from Nede & Martin (1989 who fitted a
model of scdar sex-limitation to data from 5 groups of twins who reported subjedive
impressons of drunkennessfoll owing a chall engedoseof alcohd. Themodel hereinvolves
additi ve genetic, shared andrandam environment comporents (A, C andE; see ex.ample on
page 106,and Figure 6.1, bu all ows these to dffer in their eff eds on the phencotypes of
malesandfemales. Inaddition,theregresson d the phenatypeson Ageismodeled, so that
there are parametersfor thevarianceof age( ai) andfor theregressons(s). A path dagram
of the model is hownin Figure 6.4.

I:>T1 Age PTZ

Figure 6.4 Model for sex limitation and age regresson. Sex-limited additi ve genetic
(A), shared environment (C) and spedfic environment (E) eff edson plrencotypes (P) of pairs
of twins(T1andT2). The parameter o isfixed at 1 for MZ twinsand at .5 for DZ twins.
Either y or 7 may be estimated with data from twins, bu not bath.

Note the use of boundrry constraints to prevent the estimation o parameters of oppaite
sign in the two sexes.

! Age correction
! Sex limitation model
#Ngroups 7
G1: female model parameters
Calculation
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Free ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
S Lower 1 1 Free I effect of age on phenotype
V Lower 1 1 Free I variance of age
HFull 11
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End Matrices;
Matrix H .5
Begin Algebra;

A= X*X'

C= Y*Y' ;

E= 7*%7" ;

G= S*S'

End Algebra;
End

G2: male model parameters
Calculation
Begin Matrices;
X Lower 1 1 Free ! genetic structure
Y Lower 1 1 Free ! common environmental structure
Z Lower 1 1 Free ! specific environmental structure
S Lower 1 1 Free ! effect of age on phenotype
V Lower 1 1 Free ! variance of age
HFull 11 =H1
Begin Algebra;
A= X*X'
C= Y*Y'
E= 77" ;
G= S*S'
End Algebra;
End

G3: Female MZ twin pairs
Data NInput vars=3 NObservations=43
CMatrix Symmetric File=drunkmzf.cov
Labels age drunktl drunkt?
Matrices= Group 1
Covariances V*V | S*V | S*V
S*V | A+C+E+G | AHCHG
S*V | A+CH+G | AHCHEHG /
Option RSiduals
End

G4: Female DZ twin pairs
Data NInput vars=3 NObservations=44
CMatrix Symmetric File=drunkdzf.cov
Labels age drunktl drunkt?
Matrices= Group 1
Covariances V¥V | S*V | S*V
S*V | A+C+E+G | HOA+C+G
S*V | HRA+C+G | A+C+E+G /
Option RSiduals
End
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Gb: Male MZ twin pairs
Data NInput vars=3 NObservations=42
CMatrix Symmetric File=drunkmzm.cov
Labels age drunktl drunkt?
Matrices= Group 2
Covariances VXV | S*V | S*V
S*V | A+C+E+G | A+C+G
S*V | A+CH+G | AHCHEHG /
Option RSiduals
End

G6: Male DZ twin pairs
Data NInput vars=3 NObservations=38
CMatrix Symmetric File=drunkdzm.cov
Labels age drunktl drunkt?
Matrices= Group 2
Covariances V*V | S*V | S*V B
S*V | A+C+E+G | HEA+C+G
S*V | HRA+C+G | A+C+E+G /
Option RSiduals
End

G7: Female-Male DZ twin pairs
Data NInput vars=3 NObservations=39
CMatrix Symmetric File=drunkdzo.cov
Labels age drunktl drunkt?
Matrices= Group 1

Y Computed 1 1 = Gl
J Computed 1 1 = A2
K Computed 1 1 = C2
L Computed 1 1 = E2
X Computed 1 1 = G2

T Lower 1 1=1S2
W Lower 1 1 = V2
Covariances
VW | SV | T*W _
SV | A+CHEHY | HB(\sqrt(A*J))+Q@(\sqrt(C*K))+(\sqrt(Y*X))
T*W  |He(\sqrt(A*J))+Q@(\sqrt(C*K))+(\sgri(Y*X)) | J+K+L+X
Start .5 All
Start 10V111V211
Bound 05123678
Option RSiduals
End

/
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Multivariate Asortative Mating: Modeling D

In this sdion we return to the transformation d the data described on age 104. The
guestion is now, howv do we fit a model with parameters in the D matrix, so that we can
explore the significance of marital assortment both within and between variables. For
example, is there sdledion d wedthy men by attractive women, o is it just that
attradivenessand wedth are correlated, and partners choose eat ather onthe grounds of
wedth alone? Nede & McArdle (1990 pulished atransformation d the matrix equation
on page 104which all owed thefitting of LISREL and COSAN modelsto marital data. The
LISREL implementation d the model is nat straightforward, involving phantom latent
variables (Rindskopf, 1984. However, the model isvery easy to implement in MX, asis
shown below. We have dready shown haw estimates of parametersin the D matrix may
be oltained dredly; herewe show how totest spedfic hypothesesabou dired andindired
homogamy. Philli ps et a. (1988) reports data on general intelli gence, educational level,
extraversion,anxiety, tough-mindednessandindependencein bah husbandsandwives. The
first diagonal element of D thereforerepresentsdired homogamy for intelli gence by fixing
this parameter to zero we test the statisticd significance of the process

#Ngroups 1
Assortative mating: Phillips data, Test that D 1 1 is zero
Data NInput vars=12 NObservations=334
CMatrix File=asmat.cov
Begin Matrices;
H Symm 6 6 Free
W Symm 6 6 Free
D Full 6 6 Free
End Matrices;
Start 1. H11H22H33H44H55H66
11IW22W33WA44WHEEW66

Start 1. W
FixD11
Covariance
H | HD'"*W_
WXD*H | W /
Option RSiduals
End

6.3 Fitting Modelswith Non-linear Constraints

Principal Components

Any symmetric matrix C may be decompased to aproduct ABA’ where B isared diagonal
matrix and A isared orthogonal matrix, i.e. AA’=l. The dementsof B are eigenvalues of
C andthe clumns of A arethe eigenvedors of C. In generd, if we fitted amodel ABA'
where A was full and B was diagond, it would be underidentified, since there would be
more parametersin the model than in the observed covariancematrix C. However, we can
suppy the identifying constraints that A is orthogond. In the Mx inpu file, these
constraints areimposed in group 2, ly setting AA’-1=0. Thisisnat an efficient method d
obtaining eigenvalues and eigenvedors of a matrix, bu it does highlight nonlinealy
constrained optimization. For eigenvalue and eigenvedor functions, seeTable 4.5.
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#Ngroups 2
Principal components ABA' with constraints to keep A orthogonal
Data NInput vars=3 NObservations=100
CMatrix Symm
1.
.6 .9
A2 7
Matrices
A Full 3 3
B Diag 3 3
Covariances A*B*A'/
Specification A1 23456789
Specification B 10 11 12
Start 1.0 A(1,1) A(2,2) A(3,3) B(1,1) to B(3,3)
Option LS
End

Here is the constraint A*A'=I
Constraint NInput vars=3
Matrices

A Full 33 =A1

I Identity 3 3
Constraint A*A'=I /
Option LS
End

Analysis of correlation matrices

As Lawley and Maxwell (1971 ch. 7) pointed ou, it is incorred to analyze arrelation
matrices by maximum likelihoodasif they were covariance matrices,. Incorred analysis
leadsto biased estimates of the anfidenceintervals (even the likelihoodbased confidence
intervals suppied by Mx). Likewise, the goodressof-fit statistics can be biased, with
correspondng bias in the tests of hypotheses that use the likelihood ratio test. These
problems are limited to the analysis of correlation matrices using the maximum-likelihood
methodand do nd apply to asymptotic weighted least squares. The eaiest way to avoid this
problem - and ore that we most strongly recommend - is to fit models to covariance
matrices (or raw data) wherever passhble.

If it is necessary to fit a model to an observed correlation matrix (perhaps because the
correlation matrix is the only available data, possbly pulished withou variances or
standard deviations) then Mx can be used for corred analysis. The maximum-likelihood
fit function for covariance matrices assumes that the diagonal elements of the covariance
matrix arefreetovary. If they are dl constrained to equal unity, then amodified fit function
isrequired. A simple way to implement this aternative fit function in Mx isto add a
constraint groupwhich forcesthediagonal elementsof the correlationmatrix to equal unity,
but which dces not contribute to the fit function. To ill ustrate the dfeds of corred vs.
incorred analysis, we use the data of Lawley and Maxwell (1971). Ninetests of cognitive
ability were administered to seventh and eighth grade students by Hol zinger and Swineford
(1939. The model hasthreefadorsandis srown in Figure 6.4.
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ST_CURVE

O O O

0.39 0.58 0.15

ADDITION

CNT_DOT

Figure 6.5 Threefador model of 9 cognitive aility tests (Lawley & Maxwell, 197))

Lawley and Maxwell (1971) Analysis of correlation matrix
#Ngroups 2
#include lawley.dat
Begin Matrices;
A Full 93
E Diag 9 9 Free
R Stan 3 3 Free
End Matrices;
Label Row E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col E
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Row A
visperc cubes lozenges parcomp sencomp wrdmng addition cntdot stcurve
Label Col A Visual Verbal Speed
Specify A
1300
1400
5

0
6
7
8

cCo oo o
OO
Lo o oo

1
2
22 0 21
Start .5 all
Intervals A4 2A52A62
Covariance A&R + E.E:
Options RSidual Multiple
End Group
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Constraint Group to make unit diagonal of predicted cov matrix in group 1
Constraint
Matrices = Group 1
BUnit 1 9 ! Matrix of 1's
End Matrices;
! use the \d2v function to extract the diagonal to a vector
Constraint B = \d2v (A&R + E.E') :
Option df=-9 ' Eliminate degrees of freedom credit for constraints
Option CI=90
End Group

The output with the nstraints gives confidenceintervals on the loadings from the verbal
fador to the verbal tests:

Matrix Element Int. Estimate Lower Upper Lfail Ufail
A1 4 2 95.0 0.9081 0.8284 0.9727 00 00
A1 5 2 9.0 0.8674 0.7774 0.9310 00 00O
A1l 6 2 9.0 0.8241 0.7240 0.8913 00 00

To compare these results with the incorred results that do nd include the nonlinea
constraint group, the seacond group was deleted, and NGroups was reduced to 1. This
incorred analysis gives much larger confidenceintervals on the parameters:

A1l 4 2 950 0.9081 0.7334 1.1178 00 00
A1 5 2 9.0 0.8674 0.6877 1.0816 00 00
A1l 6 2 9.0 0.8241 0.6402 1.0425 00 00

Giventhat these mnfidenceinterval srepresent approximately 1.96timesthestandard errors
reported by Lawley and Maxwell, bah sets of results closely agreewith theirs.

Fitting aPACE Model to Contingency Table Data on MZ and DZ Twins

In order to fit amodel with additi ve genetic, commonandspedfic environment comporents
to categoricd data wll eded fromtwins, we aefacal with two passbiliti es. One, we could
use PRELIS or simil ar software to estimate tetrachoric or palychoric correlation matrices
and associate asymptotic weight matrices, or two, we could fit diredly to the contingency
tables. Only thelatter approachis suitablefor models of phenatypicinteradion ketweenthe
twins. Phenaotypic interadionlealsto dfferent variances between MZ and DZ groups, or
in the cae of categoricd data, to propationate group differences in the threshalds. This
example uses a simple PACE model (seethe example shawn on age 1149) fitted to 2x2
cortingency tables oltained from MZ and DZ twin pairs. There is noinformation onthe
total variance in these data; but there is information onthe relative magnitude of the
variancein MZ and DZ groups (viathe thresholds). Therefore, it isnecessary to constrain
thetotal varianceprior tointeradion to urity. Thisisdoreinthefourth group. Thresholds
are mnstrained equal aaossgroups.

#Ngroups 4
Categorical data analysis. PACE model
Calculation
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Begin Matrices;

X

— = TN =<

H

Lower 1 1 Free
Lower 1 1 Free
Lower 1 1 Free
Full 2 2
Iden 2 2
Full 2 1
Full 11

End Matrices;
Specification P 04 40

Boundary -.99 .99 4
Specification T 56

Matrix H .5
Start .6 All
Begin Algebra;

A=
C=
E=
B=

X*X'
&Y' o
*7"
(I-P)’;

End Algebra;

End

genetic structure

common environmental structure
specific environmental structure
interaction parameters

G2: Monozygotic twin pairs

Data NInput-vars=2

CTable 2 2
File=usmz.ctg
Matrices= Group 1
Thresholds T /
Covariances A+C+E | A+C  A+C

End

G3: Dizygotic twin pairs
Data NInput vars=2

CTable 2 2
File=usdz.ctg
Matrices= Group 1
Thresholds T /
Covariances A+C+E | HOA+C  HOA+C+| A+C+E

Options Iterations=300

End

| A+C+E

Constraint group to ensure a*a + c*c + e*e
Data Constraint NInput=1
Matrices= Group 1
I Identity 11
Begin Algebra;

S=

(AIC|E);

End Algebra;

Constraint 1 = S*S' /

End
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Twins and their Parents; Cultural and Genetic Transmisson

Themodel described hasbeen devel oped extensively intheunivariate and multi variate cae
(Eaves et a., 1978 Fulker, 198; Nede & Fulker, 1984 Vogler, 1985 Fulker, 1988
Philli ps et al., 1988 Cardon, Fulker & Joreskog, 1991,Nede & al., 199). In order to
preserve consistency with the ACE model presented for twin dataal one, the same separation
of environmental effeds is made here, following the last of the referenced papers instead
of the ealier treaments. A path dagram of the model is shown in Figure 6.6.

Figure 6.6 Model of mixed genetic and cultural transmisson for data olleded from
twins andtheir parents. Phenatypes of a husband and wife (P, and P,,) diredly affed the
shared environment of their children (C;, and C;,). Assortative mating, represented by a
copath (i) based on plenotypes generates covariance between the latent variables of the
parents. The alditive genetic and shared and spedfic environmental effeds (parameters
a, ¢ and e) and the wvarianceof A and C (parameter s) are assumed to be equal aaoss
generations. Genetic transmisson from parentsto dff spring is fixed at one half.
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The development of a cvariancestructure model for thisdesignisnot simple. We describe
two approadhes: (i) dired use of RAM theory in which all variables in the model are
represented in two matrices, and the Peason-Aitken seledion formula (see page 105) is
used to handle ssortative mating, and (ii) an computationally efficient approach that
progresss in a stepwise fashion from the top to the bottom of the diagram. Approad (ii)
isrecommended for general use except where fast hardware gives approacd (i) comfortably
quick turnaround.

RAM Theory Approach

Asdiscussed on age 102, structural equationmodel s may be spedfied very simply interms
of threematrices. Thefirst matrix, S, is ymmetric and spedfiesall thetwo-headed arrows
between dl thevariables (bath latent and olserved) in the diagram. The secondmatrix, A,
is asymmetric and spedfies all the single-headed arrows between all the variables in the
model. Causal paths from variablei to variable | are spedfiedin element A;;. Thethird
matrix, F, isused to filter the observed variables from the latent variables for the purpose
of mode fitting. Thisexampleisarelatively inefficient approach to fitting thismodel, but
it ill ustrates the flexibility of Mx to implement theory-driven models explicitly.

! Rose social fears data
! Full 9-Phenotype model for all pedigree types
! P->C transmission & P--P assortment

#Ngroups 6
Gl - covariance in the absence of assortative mating
Calculation

Matrices
A Full 17 17
I Iden 17 17
S Symm 17 17
End Matrices;
Specification
00000

DO O OO OO OO
DO O OO OO OO
DO O OO OO OO
DO O DODODODOO OO
DO O OO OO OO

O OO OO DO D —
OO OO O OO O ON >
D OO OO OO OO W
O OO OO OO O O
O OO OO OO DN O
O OO OO OO O WO
O OO OO O OO
OO OO O NNNO O
OO OO O WO D
O OO OO OWD OO
O OO OO RO O OO
O OO OO WDO OO O

OO OO PO o
OO OO PO o
OO OO O oo
OO OO O oo
OO O O O OO
OO OO O oo
[en B en B e B e B e B > B an
OO O O O OO
OO OO O oo
OO OO O oo
OO OO O oo
OO OO O oo
OO OO O oo
OO O O O OO
OO O O O OO
[en B en B e B e B e B > B an
OO O O O OO
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Labels Row A
11 2 3 4 5 6 7 8 91011 1213 14 15 16 17
PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Labels Col A PH PW PMZ1 PMZ2 PDZ AH CH EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
Value 0.5 A 126 A129A166 A 169
Specify S
0

OO OO OO O oo
OO OO OO o oo
OO OO OO oo
OO OO O oo

O O O O OO

O O O o O

OO O O OO
OO OO OO
OO OO OO
OO OO O oo

000
Labels Col S
Labels Row S
Start 1.0 S 6
Begin Algebra;

R = (I-A) &S ;
End Algebra;

End

— O O O O O OO

W CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
W CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ
1111S1414S51515S 1717

0
0
0
0
0
0
0
C
R

IO O o o o o

wn = =
© T T
o NN
O I T
s
w = >

Group 2 - Calculations
Calculation
Begin Matrices;
X IZero 2 17
R Comp 17 17 =R1
Y ZIden 17 15
Z Zlden 15 17
I Iden 2 2
M Symm 2 2
End Matrices;
Specify M0 7 0
Start .1 M2 1
Begin Algebra;
A= X*R*X' I covariance matrix of parents
B= X*R*Y ! covariance of parent phenotypes with other variables
C= I*R*." ; ! covar. of variables that are not parents' phenotypes
D= (A+M) | (AHM)*A™*B
((A+M)*A™B) " |C-B"&(A*(I-(A+M)*A7)); ! handle the effects of assortative mating
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End Algebra;
Options RSiduals
End

Group 3 - Constraints on kids' G-E variance and covariance
Constraint
Begin Matrices:
E Computed 17 17 = D2
C Stan 2 2
F Full 2 17
Constraint \vec(F&E)=\vec(C) /
Specify C 8
Matrix F
00000 O
00000 O
Labels Row F P
Options RSiduals
End

00
00
HP H EH AW CW EW AMZ CE EMZ1 EMZ2 ADZ EDZ

Group 4 - MZ twins & their parents
Data NInput vars=4 NObservations=144
CMatrix File=usfearmz.cov
Matrices

C Computed 17 17 = D?
F IZero 4 17
Covariances F*C*F'/
Options RSiduals
End

Group 5 - DZ twins & their parents
Data NInput vars=4 NObservations=106
CMatrix File=usfeardz.cov
Matrices

C Computed 17 17 = D?
F Full 4 17
Covariances F*C*F'/

OO OO
O O O O
OO OO
OO OO
OO OO
OO O O
O O O O
oo o o
O O O O

0000
0000
0000
0000
Options RSiduals IT=500

End

Group 5 - Summarize parameter estimates
Calculation
Matrices
PFulll8
Compute P/
Labels Col P A C E Q ResGs ResCt Mu S
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Specification P 12345678
Start .7 P11P13

Start 5P 15

Start 1 P16

Start .1 P14P 18

End

Computationally Efficient Approach

It is posgble to get much faster turnaroundwith computationall y efficient approaches to
structural modeling of twins and their parents. In ou second script the model for mixed
genetic and cultural transmisgonwas edfied interms of the wvariances as derived from
therulesof pathanalysis. Thisisthe‘correlational model’ describedin Nede @ d. (1994
but simplified with the dgebra syntax. Ingroup l1al the model parameters are dedared in
separate matrices. In additionto the A, C and E matrices for additive genetic (A), shared
environmental (C) and urique ewironmental (E) fadors, parameters for the residua
additi ve genetic variance (R,), the residual common environmental variance (R.) and the
genotype-environment covariance (s) are spedfied in matrices G, R and S. The genetic
transmisson paths are fixed to .5 (matrix H). Separate altural transmisgon peths are
estimated for the maternal (m) and the paternal (p) effedsin matricesM and F. The matrix
B controls the cmmon environmental residual variance and refleds thus the shared
environmental effeds of nonparental origin. Asrtative mating is modeled as a cpath
(Eerdewegh, 1982 in matrix D. Matrix P representsthe within personcovariance Finally
the model all ows for non-additi ve paths (N), bu they cannat be estimated simultaneously
with the altural transmisson peths in the twin-parent design. The matrices dedaration
sedion is ended with the End Matrices; statement, and followed by starting values and
boundiry constraintsfor the parameters. Expresgonsfor the expeded correlationsbetween
the relevant family members (spouses, father-child, mother-child, MZ twin and DZ twin)
are given in the multi statement algebra sedion, indicated by the Begin Algebra; End
Algebra; commands.

Themodel isnat identified withou norlinea constraints on certain parameters. These ae
spedfied in groups 2to 5. The within person ptenatypic varianceis equated to the sum of
al genetic and environmental componentsin group 2.Group 3equatesthe genetic variance
in children to that of the parents. Similar constraints on the genotype-environment
covariance and the environmental variance ae cdculated respedively in groups 4 and 5.

The observed data ae suppied andthefit functionis cdculated in group 6for MZ twins
andtheir parents and group 7for DZ twins and their parents. The expeded covariance of
these groups is a simple combination d the expeded covariances for the respedive
relationships, as cdculated in group 1, wing horizontal and verticd adhesion. The only
diff erence between the two groupsisthe expedationfor the cvariancebetween twin 1and
twin 2.

Modificaions to the Mx code ae relatively simple to make. Additionally, fadliti es for
droppng parametersto fit reduced model s or for adding diff erent data summaries makethis
example a convenient starting point for comprehensive analyses of data from all types of
nuclea family and twin and parent data.
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! Rose Fear data:
! Twins and parents: Genetic and cultural transmission model.
I P--P assortment

#Ngroups

7

Social pho

G1: Model parameters
Calculation
Begin Matrices;

D Full
Symm
Low
Low
Full
Full
Symm
Full
Symm
Low
Low
Full
Iden
B Iden

— LT ZMXXWnmoXTo >

nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
11

11

11

nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar
nvar

End Matrices;

Matrix H 0.5

Start

1.
Start 1.

Start
Start
Start 1

Start .7

O O 01O O

X O > G U

07 E

— o e e
— e e e

11

Bound 0 1 D111

Begin Algebra;
W= P*D*p" ;
T= G*A' + S*C' ;
O= (P*F'+ W'*M")*C'+ (I+ P*D')*T'*(HRA") ;
Q= (P*M'+ W*F')*C'+ (I+ P*D)*T'*(HOA") ;
J= ARS*C'+ C*S'*A"
U= A&G+ C&R+ J + N*N'
V= HEA*(G+ H@(T&(D'+D)))*A'+ C&R+ J+ HE@H@N*N'

End Algebra;

Option Rsiduals

End

free !
free !
free !
free !
free !
free !
free !
free !
free !
free !

1

! scalar
I identi
! common

bia

assortative mating paths
within person covariance (Rp)

additive genetic paths

common environment paths
paternal cultural transmission
maternal cultural transmission
additive genetic covariance (Ra)

A-C covariance

common environment covariance (Rc)
specific environment paths

non-additive paths

. .5

ty matrix

env residual variance

G2: Phenotypic Variance Constraint
Data Constraint NInput=1
Matrices= Group 1

Constraint P- (A&G+ C&R+ E*E'+ A*XS*C'+ C*S'*A'+ N*N') /

End

I MZ
! DZ

Mother-Father Cov
Genotype-Phenotype Cov
Father-Child Cov
Mother-Child Cov

Twin
Twin
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G3: Genetic Constraint

Constraint

Matrices= Group 1

Constraint G= (HR(G+ HR(T*(D'+D)*T")+ 1)) /
End

G4: A-C Constraint

Constraint

Matrices= Group 1

Constraint S= (HQT*(M'+ F'+ D*P*M’+ D'*P*F')) /
End

G5: Common Environment Constraint

Constraint

Matrices= Group 1

Constraint R= (M*P*M'+ F*P*F'+ M*W*F'+ F*W'*M'+ B) /
End

G6 - MZ Twins and parents
Data NInput=4 NObservations=144
Labels DAD 1 MOM 1 T1 1 T2 1
CMatrix File=usfearmz.cov
Matrices= Group 1
Covariance ( P

—~ ~

End

G/ - DZ twins and parents Rose Fear Factor 1
Data NInput=4 NObservations=106
Labels DAD 1 MOM 1 T1 1 T2 1
CMatrix File=usfeardz.cov
Matrices= Group 1
Covariance ( P

Option Rsiduals
Option Iterations=800
Option Multiple

End

! Re-fit model with father-child and mother child cultural transmission set equal
Fquate F1 11 M111
End
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6.4 Fitting Modelsto Raw Data

When models are fitted to raw data, it is normal to provide amodel for the means as well
as for the mvariances. Otherwise, there is little difference in the gproaches. Mx
computes minus twice the log-likelihood d the data, with an arbitrary constant that is a
functionof thedata. Thusthere isno overall measure of fit, but there aerelative measures
of fit, since differencesin fit function between submodels are distributed as x2.

Estimating Means and Covariances

This sedion demonstrates maximum li kelihoodestimation using complete, balanced raw
data. A Choesky decompasition (seeFigure 6.2) is used for the covariance structure, and
the means are estimated separately. Alternative models for covariances or means or both
could be used if desired.

ML fitting to raw data simulated
with SAS, whose PROC COR COV gave:

1

1

!

| VARIABLE N MEAN STANDARD
! DEVIATION
I Pl 1000 0.00182388  0.98499439
7 1000 -0.98608262  1.40083917
| P3 1000 2.05400385  1.79139557
1

| COVARIANCE MATRIX

! P1 P2 P3

I Pl 0.970214 0.506058 0.620529

7 0.506058 1.96235 0.807754

1 P3 0.620529 0.807754  3.2091

! Cholesky for covariance structure
ML example, calculation of likelihood for each observation.
Data NInput vars=3 NObservations=1000 NGroups=1
Rectangular File=mlped.raw
Begin Matrices;
M Full 1 3 Free
S Lower 3 3 Free
End Matrices;
Matrix_Start values S
1
.6 .8
6.0 .8
Means M /
Covariances S*S' /
End
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The relevant part of the output from this job shows good agreement with the SAS resullts,
cdculating means and covariances in the usual fashion,aswould be expeded for asample
size of 1000. The estimates of the variances are sli ght underestimates sncethe ML estimate
of avarianceishbiased, having denominator ninstead of n-1. Multi plying the ML estimates
by 1000999 we recover the cdculated covariances predsely.

ML EXAMPLE, CALCULATION OF LIKELIHOOD...
Matrix M
This is a FULL matrix of order 1 by 3
0.0018 -0.9861 2.0536
Matrix S
This is a constrained a FULL matrix of order 3 by 3
0.9692 0.5056 0.6199
0.5056 1.9604 0.8069
0.6199 0.8069 3.2059

Variable Pedigree Sizes

When there ae many different possble configurations of data, it is most convenient to use
avariable length data file (see page 44). This information can be read by Mx and the
likelihood d the datamay be cdculated for any structural model for the mvariancesandthe
means. In this example, a Choesky decompasition (see Figure 6.2) of the expeded
covariancematrix is gedfied in Group 1.

' ML fitting to variable length data
! Cholesky decomposition for the expected covariance matrix
! Also matrix expression for means
! - in this case just a simple vector with free parameters
Variable pedigree size ML example

Data NInput vars=3 NObservations=1000 NGroups=1

VLength File=unbal.raw

Begin Matrices;

M Full 1 3 Free

S Lower 3 3 Free

End Matrices;

Start .7S11-S533

Means M /

Covariances S*S' /

End

Typicd lines of the datafile unbal.raw look like this:
f 2 0.5550 -1.1114

? 23 1.6442 -0.1319 3.609508

? 23 -0.2145 -1.2193 5.011667

? 23 2.2274 -1.9423 0.714351
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There can be problems when beginning to fit models to VL data. One cmmonly
encountered dfficulty isthat at the starting values, thelikelihoodis eff edtively zero for one
or more pedigrees. Since MX is going to try to take the logarithm of the likelihood,some
corredive adionisrequired. During iteration a penalty functionis used, bu this doesn’t
help the cae where there ae poa starting values. To help guide the user to the problem
withthe starting values, M x printsout 3 columns of information: the observed and expeded
means, and then the standardized dff erence between them. Now if these diff erences are
large (say more than 3for any variable), it would be agoodideato change starting values
of either the means (to make the expeded ores closer to the observed) or the variances (to
makethe standardized dff erencelesy. If the starting valuesof the meansare very bad, then
it would make sense to change them; however, if they are nat, the eror may occur with
ancther vedor in the dataset, in which case modifying the starting values to increase the
expeded variances shoud help. If not, examinethe expeded covariancematrix; sometimes
large expeded covariances can make particular pairings of scores rather unlikely. It is
usually better to supdy starting values that spedfy adiagonal variance-covariance matrix,

since the overdl likelihoodis smply the product of the likelihoods of the individual

variables. If ead o these likelihoods is reasonable, e.g. a standardized dfferenceof less
than 2,thenthe overall li kelihoodwill nat produceproblems unlessthe number of variables
in the vedor islarge.

Definition Variables

For example: suppcse that the variances of and covariance between two variables vary as
afunction d age. A traditional approach to this problem might involve splitti ng the sample
into two groups, yourg and dd, and fitting a two-group model. Comparison d the fit
statistic obtained when the wvarianceis constrained to be equal in the two groups to that
obtained when ead group tesitsown covariancestructure provides atest of heterogeneity.
But what if we want to use dl the information onage, which is a continuots variable,
instead of an arbitrary cutoff for yourg vs. old?

We can use the observed age variable to define the mvariance structure for that particular
observation. That is, we want to fit amodel of the form

y, = Lf+Xage

whereL and X are lower triangular matrices, f isavedor of independent randam variables
with mean zero and urit variables, and age isavedor with age as ead element. Thusthe
covarianceof y; will be

Cov(y,,y;) = LL'+XRX’

where R isadiagonal matrix with age as all elements. A script to fit thismodel is shown
below. Let variables1, 2and 3correspondto verbal 1Q, quantitative 1Q, and age, which we
read fromfileiq.vl. Mx usesthedefinition keyword to identify variablesthat areto be;
they are extraded from the dataset so modeling is restricted to the other variablesV and Q
(seefigure 6.7).
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Figure 6.7 Definition variable example.

Title - verbal and performance IQ covariance as a function of age
Data NInput=3 NGroups=1 ! Single group example with 3 variables
Labels Verbal Quant Age
VL file=IQ.VL
Definition variables Age / ! This variable is referenced as -1 in
! specification statements
Matrices

L Lower 2 2 Free ! Triangular matrix of paths from factor Fi to variable 0]
X Lower 2 2 Free ! Triangular matrix of paths from factor Ai to variable 0j
RDiag 22 I Matrix for variances of Ai Tatent variables

M Full 1 2 Free I Matrix for estimating means

Means M / ! Formula to compute mean vector

Covariance L*L' + X*R*X' / ! Formula to compute covariances

Specify R -1 -1 ! Place definition variable on the diagonal elements of R

Matrix M 100 100
Matrix L 15 0 15
Matrix X 3 0 3
Option RSiduals
End

Starting values for means
Starting values for constant covariance component
Starting values for age-dependent covariance component

|
|
!
! Request some output
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Internally, Mx will recdculatethe predicted covariancematrix for every observation'®. The
usual raw data log-likelihoodfunction is computed for every vedor of observations, but
using the gppropriate mvariance matrix for this group. If we wereto assgn ore and zero
to the aye variable in acardanceto ou cutoff approach, we would get the same results as
the two-group Feterogeneity method.

Apart fromthishandling of continuous heterogeneity, weshoud be avarethat considerably
more complex models may be dtadked. All thetoolsof Mx matrix functionsand operators
may be used to define linea and nonlinea functions of the definiti on variables and model
parameters.

Using NM odel to assessheterogeneity

Mx has geda feadures for asessng possble mixtures of distributions. Almost all

structural equationmodel smaketheimpli cit assumptionthat one model describesthewhadle
popuation. In redity, the popuation may consist of several subpopuations. This type of
analysis requires the raw data to be analyzed, and thus assumes a multivariate normal

distribution d ead of the comporent subpopuations. Thelikelihoodfunctionismodified
for this type of mixture. Let L, be the likelihood uné@r model 1 and L, be the likelihood
under model 2. In bah cases, this likelihoodis computed with the multivariate normal

probabilit y density function, as described on fage 64. The overall li kelihoodis computed
asaweighted sum of thelikelihoodsfor eadt model, andthelog-likeli hoodisthelogarithm
of this overall li kelihood. Mx lets you enter any matrix formulafor the weights; here we
ill ustrate the method with a simple propartion.

Suppcse that the popuation consists of a mixture of two groups, one with popuation
covariance matrix

and the secondwith covariance matrix

3. =
2|21

Using SAS, adata set of 500 irs of scores for ead of the two groups was smulated. In
additi on, two further scores were alded to the dataset: (i) ameasure of groupmembership,
being N(0,2) for thefirst group,andN(1,1) onthe second- anormally distributed indicator
with al standard deviation dff erence between the groups; and (ii) akey variable scored 0
for the first group and 1for the second. The observed covariance matrices for the two
groups and the recovered estimates for a variety of models are shown in Table 6.1. Firgt,
the results of fitting a model with no teterogeneity. The mvarianceis estimated at .47
which is approximately half way between .2 and .8 smulated for the two popuations.

91nfag, it only doesthis if the definition variables have diff erent values from the preceding case, so
sorting may improve performanceif the definition variables are quasi-continuous or ordinal.
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Sewmondare the results of attempting to deted this heterogeneity with a simple model that
tries to estimate the propartions in the two samples. There is evidence of heterogeneity
here, because thefit function hasimproved compared to model 1. However, the parameter
estimates recovered are not goad estimates of the popuation statistics, particularly for the
low correlation group,whose propationis estimated at only .27 d the popuation. Better
estimates are recovered when the true popuation popationis used (Fixed Heterogeneity
model). Therefore, without external indicaors, it seems dangerous to draw conclusions
abou the propartions in the popuation, uress smple sizes are much larger than they are
here. TheFixed Indicaor model usestheinformationfromtheindicator variableto partially
discriminate between the popuations. A better fit is found,and good recovery of the
popuation parametersisobtained. To make thismodel redlistic, the relationship between
the indicator and group membership shoud be estimated. Again, the parameter estimates
arelessredistic, particularly for thelesscorrel ated subpopu ation,whenthe propationsare
estimated rather than given.

Insummary, it may be possbleto deted the presenceof heterogeneity in araw dataset with
amoderately large sample size. However, unessone has agoodindicator variable - and
knowsits relationship to the variables being analyzed - it is difficult to quantify theway in
which the ‘latent groups’ differ. One example where agoodindicaor variableisavail able
isgeneticlinkage (Eaveset a., 1996). Modeli ng heterogeneity with andwithou indicaors
isin nead o further study, bah the mmplexity of the models used, and the sample
propations.

Table 6.1 Summary of parameter estimates for a variety of models of heterogeneity

Model V1 C V2 p -2InL df
One model 1.0093 0.4699 0.8394 5344.12 1995
Estimated 0.5949 -0.1968 1.0359 0.2727 5289.39 1991
Heterogeneity 1.1779 0.7259 0.8840

Fixed 0.8409 0.1353 1.0065 .5000 5293.28 1992
Heterogeneity 1.1957 0.8113 0.8449

Fixed 0.9460 0.1721 0.9830 5267.59 1995
Indicator 1.0920 0.7764 0.8679

Estimated 0.6794 -0.1476 1.0017 5263.80 1988
Indicator 1.1672 0.7456 0.8922

Perfed 0.9997 0.1356 0.8473 5101.71 1992
Indicator 1.0393 0.8125 1.0036

Datawere simulated with unt variance and .8correlationsfor 500cases, and unt variance
and .2correlationfor 500 cases.
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#Ngroups 1
No heterogeneity
Data NInput=4 Nobservations=0
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
M Full 1 2 free
End Matrices;
Start 1A11toA22
Means M ;
Covariance A*A' ;
Option Mx%Zp=indivl.Tlik
End Group;

#Ngroups 1
Simple Heterogeneity - two models, no indicator
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
IUnit 11
M Full 1 2 free
P Full 1 1 free ! proportion in subpopulation 1
End Matrices;
Start 1A11toA2?2
Start 5B11toB22P11
Bound .001 .999 P 11
Begin Algebra;
Q=1-P; ! proportion in subpopulation 2
W= P
Q; ! vector of weights
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W ;
Option MxZp=indiv.1lik ! put individual likelihood statistics to file
Option RSiduals Multiple
End Group;

I Fixed proportions heterogeneity

Drop @5 P 111
Exit

#Ngroups 1
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Estimated indicator
Data NInput=4 Nobservations=0 Nmodel=2

Rectangular File=siml.both

Labels X Y Z Key

Select XY 72/

Definition 7 /

Begin Matrices;

A Lower 2 2 free ! Cholesky of first subpopulation covariances

B Lower 2 2 free ! Cholesky of second subpopulation covariances
IUnit 11

M Full 1 2 free ! Vector of estimated means

CFull 11

J Full 1 1 free !Mean of first group on Z variable

K Full 1 1 free !Deviation of Mean of second group

L Full 1 1 free !Variance of first group on 7 variable

N Full 1 1 free !Variance of second group on 7 variable
End Matrices;
Specify C Z
Start 1TA11toA22L11IN11
Start 5B11toB22J11
Start .25 K11
Bound .1 3L 1INI1I1
Bound 0 3 K11
Bound -3 3J 11
Begin Algebra;
P = \pdfnor(C_J+K N) & ( \pdfnor(C_J L) + \pdfnor(C J+K N) ) ; ! compute prob
Q=1 -P;
W= P _Q;
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W ;
Option Mx%Zp=indiv.lik
Option RS
End Group;

#Ngroups 1
Fixed indicator
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y Z /
Definition Z /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
IUnitll
M Full 1 2 free
CFull 11
7 7ero 11



Example Scripts 139

End Matrices;
Specify C Z ! put individual Z variable scores into matrix C
Start IA11toAZ2?2
Start . 5B11toB2?2
Begin Algebra;
P = \pdfnor(C I I) % ( \pdfnor(C Z I) + \pdfnor(C I 1)) ;
I P computes probability separately for every case in the sample
Q=1-P;
W= P
Q:
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W :
Option MxZp=indiv.lik
Option RS
End Group;

#Ngroups 1
Two groups, perfect indicator (Key)
Data NInput=4 Nobservations=0 Nmodel=2
Rectangular File=siml.both
Labels X Y Z Key
Select X Y Key /
Definition Key /
Begin Matrices;
A Lower 2 2 free
B Lower 2 2 free
FFull 11
IUnit 11
M Full 1 2 free
CFull 11
Z Zero 11
End Matrices;
Specify C Key
Matrix F 5
Start 1A11toA22
Start 5B11toB2?2
Begin Algebra;
P=C: ! compute prob
Q=1-P;
W= P
Q ;
End Algebra;
Means M M ;
Covariance A*A' B*B' ;
Weight W ;
Option Mx%Zp=indiv.lik
Option RS
End Group;
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6.5 User-Defined Fit Functions

Least Squares

Thisis asimple example to ill ustrate the use of a user-defined fit function, in this case
least-squares. Themodel statement evaluatesto ascdar whichisminimized by Mx. Note
that this approad is generally lessefficient than using built-in formulae aailable in Mx,
but it is much more flexible.

User defined function to fit to a correlation matrix by Teast squares
Data NInput vars=3 NGroupies=1
CMatrix Symm

1

21

341
Begin Matrices;

A Symm 3 3 = %01

B Stan 3 3 Free
End Matrices;
Begin Algebra;

D= \vec(A)-\vec(B);
End Algebra;
Compute \sum(D.D);
Option User

End

Correction for Ascertainment

On page 86, we described how proband-ascertained ordinal data could be used to estimate
populationcovariancesor geneticdly informative parameters. This sametruncate selection
might be goplied using a screening instrument, so that only individuals above a cetain
threshold value are sampled. If such an ascertainment scheme was applied in a pairwise
fashion, such that only pairs in which at least one of the pair was above threshdd, the
likelihood d these observationswould require wrredionfor the necessarily misdng pairs
concordant for being below threshald. Mathematicdly, thelikelihood d pair ascertainment
can be expressed as adoule integral of the bivariate normal distribution:

L = ft f;qﬁ(vl,vz)dvzdvl

wheret isthe ascertainment threshald, v, and v, are the li abilit y values of individuals 1 and
2, and ¢ is the multinormal probability density function. The likelihood d a pair of
observations x; and X, given the acertainment scheme is therefore:

(X, %)
1- f ‘ f " p(v,v,) dv, dv,

L XA) =
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If we usetwicethe negativelog-li keli hoodas afunctionto minimize, then the ascertainment
corredion becomes more dealy distinct:

~2InL(x, X JA) 2(In(¢(x1,x2) [ f:oq&(vl,vz)dvzdvl))

~2In(@(x,%,)) + 2In(1- f‘ f;¢(v1,v2) dv,dv,)

Il

when we have m pairs, the likelihoods are summed over j=1...m, giving
t pt
= ~2n((xy ;) + 2min(1- [ [ (v, v,) dv,dv,)

Thefirst termisthe functionvalue cdculated by Mx when fitting to raw data. The second
term may be cdculated by obtaining the value of theintegral fromadummy caegorica data
groupusing zero observed frequenciesin ead cdl. Parameter t, thethreshold inthisgroup
shoud befixed at the popuationvalue, andthe wrrelation shoud be mnstrained to equal
the correlation d these two variables as estimated from the ascertained data. The expeded
propartions under the bivariate normal distribution are passed as a matrix using the %P
constraint as described on age 53.

Simulated twin data. Raw ML estimation
Data NInput=2 NGroups=3 NObservations=1000
Raw_data file=[neale.sas]mzasc.dat
Begin Matrices;

MFulll?
R Stan 2 2 Free
End Matrices;
Mean M /
Covariance R /
Matrix M 0 0
Bound -.99 .99 R 1 2
Option RSiduals
End

Dummy group to calculate expected cell proportions
Data NInput=2
CTable 2 2
00
00 I'It's full of zeros so it contributes zero to the function
Begin Matrices;
TFull 21
R Stan 2 2 = R1
End Matrices;
Matrix T
1.282 1.282
Thresholds T /
Covariance R /
Option RSiduals
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End

Calculate ascertainment correction
Data NInput=0
Begin Matrices;
I Iden 11
J IZero 12
P Full 22 =1%P2
TFRuUIT 11
End Matrices;
Matrix T 2000 I twice the sample size of group 1
Compute T*\Tn(I-J*P*J') /
Options User-defined RSiduals Multiple
End
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Appendix A Using M x under different operating systems

A.1 Obtaining MXx

Currently the Mx statisticd engineis avail able for several Unix systemsincluding Linux,
Solaris, Irix, IBM AlX, Digital Unix, HP Ux). Versionsfor most operating systems can be
downloaded via the internet at http://views.vcu.edu/mx. The MXx Graphicd Interface
(MxGui) is avalable for MS Windowvs and MS-DOS and may be obtained from
http://www.vipbg.vcu.edw/mxgui. It can use ather the included DOS version a Unix
versionto analyze data.

A.2 System Requirements

A3

A4

To runthe Mx graphicd interface you reed:

An IBM-compatible PC running Windowvs 3.x a 95 a NT

A 386-DX (or 386-SX with coprocesor) or above (486-DX, Pentium, etc.)
A mouse or similar pointing device

At least 6Mb of freediskspace

At least 16Mb o installed RAM

To use networked Unix workstationsto runthe Mx statisticd engine (for faster turnaround
of cpuintensive jobs) a TCP/IP conredionis needed.

| nstalling the Mx GUI

Windows 95/98/NT

Download mxgui95zip and urzipitintoadiredory suchasc: \templ (alternatively youcan
use WinZip http://www.winzip.comto ureip andinstall inasingle step). Runthe program
setup.exe by doule-clicking onit in the Windows Explorer and foll ow theinstructionsfor
the installation. Chocse an instalation dredory that is different from the directory
containing the setup.exe program.

Windows 3.xx

Download thefilemxgui31l.zip and urzipit into adiredory such asc: \templ (aternatively
youcan use WinZip http://www.winzip.comto urzip andinstall in asinge step). Runthe
setup.exe file by doutde dicking onit in the File Manager and foll ow the instructions for
the installation. Choose an installation dredory that is different from the diredory
containing the setup.exe program; we recommend the default C: \mxguii.

Using M X

Windows

SeeChapter 2.
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Dos

Mx iswritten in abou 30,00 lines of FORTRAN, andit li nks to afurther 20,000li nes of
NPSOL code for optimization, so the resultant .exe file does not runwithin the 640K i mit.
Fortunately, the Lahey compil er all ows binding of aloader to the ade which permits Mx
to use memory beyondthe 64K limit in 386and 486madhines. If the program runs out of
memory, it will use virtual memory (disk space instead, bu obvioudly this can drasticdly
deaease performance. The use of Stadker (file compresson software) also seemsto slow
things down, espedally for thefirst runin amultiplefit file. Under DOS, performance can
beimproved if SMARTMEM isloaded.

Note the diff erence between your computer running out of memory and Mx running out of
workspace Currently, the PC versionis configured with 100,000 doule predsionwords
of workspace larger workspace ca be requested onthe command line with e.g.

mx -k 500

which would request 500,000words of workspace

We recommend that input fil es have the naming convention cutename .mx where cutename

isaname of your choice TorunMx onaPC, crede a1 inpu script and type

mx cutename.mx {cutename.mxo}

if youarerunnng DOS. Mx now nolonger requiresthat the output fil esbe spedfied onthe
command line. With the syntax

mx cutename.mx

the output will bein afile cdled cutename.mxo

If you wish to use other extensions or names for inpu and ouptt files, you could, for
example, creae afile cdled badname. abc, and wse the syntax:

mx badname.abc awfulname.xyz

which would creae an output file cdled awfulname.mxo. The command

mx badname. abc

would generate an ouput file cdl ed badname.mxo

UnderWindows 3.x, 95andNT, it ishandy to usethe Asciate optionin the Fil e Manager,
to asxociate .mx fileswith themx. exe programfile. Doulde-clickinga .mx filewill then run
MXx and produce a.mxo ouput file. Feedbad of function evaluations is printed onthe
screen. Alternatively theinpu file can belaunched onthe Mx icon. Similarly the .mxo fil es
can be asociated with your favorite text editor/viewer, so that output files are eaily read
with adoulde dick.

We can extend the idea of filename extensions a little further to include: covariance
matrices, .COV; correlationmatrices, . COR; contingency tables, .CTG; matrices, .MAT; variable
length files, .VL; redangular files, .REC; weight matrices, . ASY; inverted weight matrices,
.AST; vedors of means, .MEA; mx savefiles, .MXS. Of course, it doesn't make any diff erence
to the program what you cdl thefil es, but some widely-used conventions sich asthese help
youand aher usersto understandthe content of the diredory when you (or your coll eagues)
look at it six months |ater.
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UNIX

Hypertext output may be requested with the -h flag, e.g.
mx -h myfile.mx myfile.htm
would produce html output suitable for looking at with a browser like Netscepe.

Mx may be used very ssimply in UNIX by typing

mx <inputfile >outputfile

andthe parameter & may be added to runjobsin betch. For very cpuintensive gplicaions
the coommand

nice mx <inputfile >outputfile

may be used to runthe job at lower priority to avoid overtaxing the system.

You can aso use abmx script which all ows you to use the foll owing syntax:

bmx inputfile

The ouputfile is then automaticdly creaed as inputfile.mxo; the bmx script may be
downloaded, bu it is quite short:

(usr/local/bin/mx <$1.mx >$1.mxo; \

echo “Mx has just finished a job for you *G"; \

echo “See output in $1.mxo”)

and shoud be entered as asingle line, with the literal charader ctrl-G (ASCIl code 7) to
make abeep.

VAXVMS

TheVMSversionisnolonger suppated; however, version #is gill avail able & thewebsite.
Mx for VMSis distributed with a command fil e (MX.COM) which deds with file extensions
and chedksto seewhether the user has aufficient memory resources. Typicdly one user at
asite, the administrator, will keep the mmmand and exeautable fil eswith read and exeaute
permissonset for al users. Thenif users define the symba mx with a command such as
$ MX :== "@DISKI1:[BOSS.MXIMX.COM DUMMY"

where DISK 1 is the name of the diskdrive, BOSSis the name of the administrator, and
BOSSMX isthe name of the subdredory in which the mx.com andmx.exefil esare stored.
The dove symbad definitionwill permit usersto run Mx either interadively or as a batch
job. The only differenceisthat the former will produce amesmerizing display of the Mx
logo andthe latter will freeupyour terminal to dosomething elsewhil eit runs. The output
file may be read whil e the program is runring, though emptying the print buffer has been
reduced to improve performance

Mx can be runeither interadively with the foll owing syntax:

$ MX CUTENAME

or alternatively, you can runthe jobin batch with

$ BAT/Q=whateveryoulike MX CUTENAME

for short jobs, ignorethe /Q= bit. With this g/ntax, the output will be cdled CUTENAME . MX0.
Thereisalso afacility, cdled imx, for editing jobs, runnng them, and viewing the outpuit.
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Appendix B Error Messages

B.1 General Input Reading

If, whil elooking for anumber, a(non-comment) inpu linewith orly norntnumeric charaders
onit (e.g. matrix P) isfound,the program issues awarning:
**WARNING** Non-numeric characters found when trying to read a number

Thisisto alert the user to what is probably an error of nat reading enough numbers, for one
of these reasons:

* inpu linesare toolong (1200column maximum, except AlX (500)

» the matrix was given the wrong dimensions in the matrices command

» toofew numbers have been suppied

Thisisnot afatal error, but normally some other problem will arise. Similarly, if too many
numbers have been provided for a matrix, (or a mistake was been made when defining the
type or dimensions of the matrix) the program will usually try to read a number as a
keyword, ask something like “Just what is this keyword supposed to mean?™ and stop.

Sometimes an integer overflow will occur if too many digits have been read in freeformat
for a number. Try to kee the number of digitsto 9 a less If you redly need more
predsion, we the exporential format (D+00) or read datafrom afile.

B.2 Error Codes

Thisisalist of the eror codes reported by Mx. The eror messages are suppased to be
self-explanatory, but they are usually quite brief. Heretheitalictex isthe @ror, and ordinary
type gives alittl e further explanation.

1 First inpu line after title must be DATA. Will occur if the Title line has been forgotten. Maybe, just

MAY BE, you got your NG wrong.

Data line must have NI andNO spedfied. (Datagroupsonly).

End o filewhiletryingto readtitle.

Must spedfy Matrices at this point... Perhaps you have the wrong NI or the wrong matrix type - SY

instead of FU?

Not a legal matrix name. Use A-Z, one letter only.

lllegal matrix type... Ched for typos. Youmay use ZE, ID, I1Z, ZI, DI, SD, SY, ST, FU, UN or LO.

Sary, | seanto be at the end o your inpu file. Chedk NG is corred.

Number of seleded variables must be lessthan a equd to number of input variables NI ... Otherwise

youwon't be analyzing something sensible and pasiti ve definite.

9. Error - novariables ®leded for andysis.

10.  Teribly sorry, | dort have enoughworkspace

1L Please try nat to refer to matrices that you haven't spedfied.

12. Please use only Pattern or Spedfication throughaiut. Pattern and Spedfication canna be used in the
sameinpu file,

13. Error - no matrix spedfied...

14. More than 3 dmensions gedfied. After amatrix name, there shoud be amaximum of 3 numbers to
identify the dement.

15. Error - matrix has not been spedfied.

16. Matrix has been spedfied na to havefree éements. SeeTable ?to figure out which types of matrix can
have free déements.

Eal SN

O N O
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23,
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34.

35.

36.
37.
38.

39.

40.
41.

42,

43.

44,
45,
46.
47.
48.

You cannd alter off-diagond elements of a dagond matrix.

Incorred element of a Subdagoral matrix spedfied. Youcan't ater elementson a above the diagona
of as Subdagonal matrix.

Incorred element of a Sandadized matrix spedfied. You can't ater elements on the diagonal of a
Standardized matrix.

Pleaseuse2 or 3 dmensiond format for elements. Array references roud begrouprow,col, with group
optional.

Sary, | can't find your matrix dement. | redly shoud tidy up sometime.

I'msorry, | dorit understandthispart of DATAline, so I'mignaingit. Notethat Mx isnot LISREL and
won't fiddle &ou changing data structures using the MA= command syntax. You can adways do it
explicitly in alittle Mx job which will be goodfor your immortal soul.

Sary, | couldn't invert your expeded matrix. If the methodis ML, the expeded matrix has to be
invertible throughou optimizaion. Mx will try to avoid nonpositive definite aeas with a penalty
function.

Sary, | couldn't invert your asymptotic matrix. If the asymptotic matrix is not positive definite, it must
befixed. Ched the Seled command for repetitions of anumber, if it is used.

Strangely, you seemto haverequested an urknown matrix operation. |F you get this one, memory is
screwed upsomehow, andyoushoud ched your input fil e caefull y before sending the problemto Mike
Nede.

Sary, your model matrix has different dimensions from your data matrix. A common silly mistake.
Carefully figure out the dimension o your model, chedk NI parameter and Seled command if used.
Sary, your expeded matrixisnot symnetric. The matrix formulayou provide shoud yield amatrix that
is yymmetric, if it isto befitted to data.

**Sorry, you must have symnetric or full model** Same & previous message.

Pleasetry not to spedfy inverse for non-square matrices. Generali zed inversesare not available. If you
are desperate, try transforming to a partitioned matrix that has a square matrix of full rank at one end.
Sary, hadtroubetransposing amatrix. Thisisan urlikely error.

Sary, | couldn't find the determinart of a matrix. | thought | put it on the shelf here somewhere...
Probably zero.

Uh-oh.. there's a problem with a binary operator. This can happen when evaluating an ill egal matrix
expresson, but it isunlikely.

Sary, the matrix addtion screwed up Very unlikely.

The matrices you wish to add ae not conformable for addtioni.e. the number of rows (columns) in
matrix 1 is not the same as the number of rows (columns) in matrix 2. Quitelikely. If at first you dorit
succea, chedk ched and ched again.

The matrices you wish to multi ply are not conformable for multi pli cationi.e. the number of columnsin
matrix 1 is not the same asthe number of rowsin matrix 2. Be surethat you are using the right type of
multi plication for your application, as well as cheding the dimensions of the matrices you wish to
multiply.

You seanto havean urknown matrix type. Very unlikely.

| seamto be using an uknown fit function. Very unlikely.

Youmust spedfy 3 numbers for bounday constraints. Lower bound Upper bound Parameter # or array
element.

First character after BOUNDARY must be alphanumeric. Alphanumeric means aphabetic
abcdefghijkimnopgstuv or 01234356789

Sary, to request AWLS for this group, you shoud haveinpu an asymptotic covariance matrix.

| dorit know to what you want me to equae this matrix. Some atror in the =Mi command to equate
matrices. Equateemust be onthe sameinpu line.

Sary, | can't makethis matrix equd to amatrix that you haven't suppied yet. Reorder your groupsiif
it isn't atypo.

Uh-oh... | got stuck inverting amatrix while alculating expeaed matrix... If you ae using an(I-B)~
formulation, makesurethat the parametersin BdoNOT havebound+1 or -1. Thiserrorisa panin
theneck If you cetit alot, let me know. Thiscan be avkward. Sometimes garting values or changing
the boundxries on parameters can help.

Uh-oh... I'mhaving troudereading a number in D or E format. Probably atypoin the data.

Sary - could you pu the =filename on the same line as the FI, please?

Awfully sorry, | couldn't open afile for you. Probably a spelli ng mistake in the filename.

| deeply regret that your equdity constraint refers to a norexstent matrix.

OH NO! ThelOP parameter callingMSOFARiswrong | havenoideawhat thiserror means. Thegood
thing abou it isthat you are not likely to get it.
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Pleasedorit mixthenumeric and aray referenceson aBoundline! Useonly parameter numbersor only
matrix elements. | just get so terribly confused.

Therel was, looking for a number and- blow medown... - | just could na findit. Probably an error in
spedfying the dimensions of amatrix. The end o file was found tefore the number.

It seams rather strange to meto havea + or - sign withou a number after it. Well, wouldn't it seem
strange to you?

You seamed to put a * in the midd e of two numbers but WRONGLY. Do na passGO, do nd colled
$200

Uh-oh. Now there are too many numbers in alist.

Nincompoop Your data matrix hasto be pasitivedefinitefor GLS. Probably alittl e harsh, thismessge.
Ouch! do nd try to change your mind abou the number of groups NG... This used to cause big
headacdes.

Awfully sorry, old chap, you're trying to | between matrices that have a dfferent number of rows. No
can dd Chedk conformability.

Awfully sorry, old chap, youretryingto _ between matrices that have a dfferent number of columns.
No way! Chedk conformability.

Uh-oh! Your formula hasanill egal character. Edit your input file andarrest thischarader immediately.
Onthe IBM RISC 6000it can occur spuriously andirrationaly if you leare blank spaces at the start of
alinefollowing an underscore. Heaven knows why.

Uh-oh! Your matrix expresson has a mistakein it. Pleasefixit. This could be unmatched parentheses,
amisgng operator or amissng matrix. Sorry that it isn't more spedfic... Also, the matrix formulais
sensitiveto untrapped memory problems. Oneknown pacsshility isthat you havetried to dosomething
to arange of matrices from different groups, eg. Start LA111-A433

There seams to a problemwith your format in your data file. Put the format in parentheses () or use *
toreal datain freeformat.

Oh dear! The model you spedfied dces not give the same number of rows in the Expeded Matrix as
there arein the Observed Matrix for thisgroup. Chedk the order of the model.

Sack has overflowed - kick Mike Neale. This is nat necessary to fix the job. Your complicaed
expresson ouwht to be simplified by using a CALC groupto precdculate part of it.
Thematricesyouwish to subtract are not conformablefor subtraction. i.e. the number of rows (columns)
inmatrix 1 isnot the same as the number of rows (columns) in matrix 2. If this message doesn't add up
to you, go badk to elementary schod.

I'mterribly sorry, stack 1 has overflowed. Please abuse Mike Neale. Simplify your expresson with
CALC groups.

I'm terribly sorry, stack 2 has overflowed. Please abuse Mike Neale. Simplify your expresson with
CALC groups.

An undefined matrix has been encourtered in the matrix formula. Look for typosin theformula, andin
the matrices command. You're using a matrix that hasn't been spedfied for this group.

Youseemto havemissed ou an ogerator... Matrixnames sioud besinglelettersonly. Chedk thematrix
formulafor matrix names that are more than ore letter.

At first you pu % but then there was neither O nor E nor R after it. Pleasetry nat to makegramnmtical
errors likethis. So pu O or E or R after it!

You seemto bereferringto parameter spedfications for an Observed or Expeded matrix... Thereisno
way that you are going to be dlowed to dothis.

I want you to get this right. If you equae to the Observed or Expeded matrix, you must spedfy a
symnetric or full matrix. Get it right.

The matrix you are trying to equate to the O matrix is bigger thanthe Observed matrix following ary
seledion. Makeit smaler...

Thematrix you aetryingto equateto the expeded matrix isnot the same sizeasthe expeded matrix for
that group. Thesizeof the expeded matrix for that groupisdetermined by the size of its observed matrix
after seledion. Makeit thesamesize

You haveto gve NG after CA if thefirst groupisa CALC group. So doit.

Tut-tut! you aretryingto da-product two matricesthat havedifferent dimensions. Thisisdifferent from
ordinary matrix multi pli caion after all.

| tried to read andher group and fit the end d fileinstead. Either NG= iswrongin group 1, or your
inpu file has been truncated. NG is probably wrong.

Look buster, if youwant to define your own function. Then please get your matrix formula to define a
1x1 matrix! Seepage86
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At first | though you were goingto use a function, but then... You ddn't put \det, \tr, \exp, \In, \sgrt,
\v2d,\d2v, \m2v, \v2s, \v2f, \eval, \eveg\iveg \ival, \stnd, \ved, \veg \sin \cos\tan\sinh\cosh \tanh \muln
- or any functionsthat | recgnize, so | am confused.. You must have booked somewhere.

Sary, | only calculate the determinarnt of SQUAREmatrices.

Sary, | only calculate the trace of SQUAREmatrices.

| say, if you use the \EXPonent operator, you must make sure that the exporent isa 1x1 matrix. You
won't get this error message.

| can't equate this matrix to the observed daa of that group, because it hasn’t got any!

Hmmmsorry | dont understandthis keyword. CheckNI= and FU/FI status of data matrices.

HEY! | though youwere going to say = but where'sthe =??

You can orly have MA=CM,PM, or KM right now - sorry!

Pardon my ignarance here, but | don't understand this keyword. You shoud be using ore of the
following: CMatrix, PMatrix, KMatrix, ACov_matrix, Raw_daa, MEans, SKew, KUrtosis, LAbels,
SEled, or MATrices. Where at least the uppercase letters must be given. Quite posshbly, an earlier
commandscrewed up Thisis commonly encourtered in the midd e of alist of numbersif thelist istoo
long. This may be becaise you have given too many numbers for the type and size of the matrix
concerned, or aternatively you may have spedfied the dimensions of that matrix incorredly. Note that
you shoud only supdy numbersfor the modifiable dements of a matrix, which depends heavily onthe
type of matrix. SeeSedion 45 for detail s on numbers of elementsin different types of matrices.
Imaginethis: I'mreading a number and| seea\ character, so | think. | know, it must be\PI or \E BUT
then to my surprise | seeit isneither. Do beless sirprising in your input.

I'msorry, | can't writea matrix that doesn't exst to afil e. Remember, thismatrix hasto be defined in this
group.

To output matrices to files, use Mx with 1letter after it (exceptions %E %M %P %V) then an= sign.
No spaces or anything else all owed.

AAAAGH! Youcan't assgn paameters to the raw data vedor.

If youwart to fit to the raw data vedors, you must put themin avedor that has 1 row andthe @mlumns
lessthan a equd to the number of inpu variables before seledion, if any.

No, | won't let you dothis. It would overwrite the first raw data okservation. Go andedit your data
instead.

Uh-oh, attempt to takelog o zero or negative \alue imninent.

In order to use Maximum Likdihood to raw data, it is necessary to suppy both a model for the
covariances, and ore for the means.

Sary, the exypeded matrix is snguar just now.

Just WHAT is this keyword suppcsed to mean? You shoud be using ore of the following:
MEan_structure, THresholds, COvariances, SPedfy, MAtrix, PArameter, FIx, FReg EQual, VAlue,
STart, BOunday, OPtions, ENd, OUtput. Where at least the uppercase letters must be given.

You have tried to convert something that wasn't a vedor into a matrix. Please try not to abuse \v2
functionsin thisway.

At your starting values, evaluation of the log-li kdihoodmade me take the logarithm of something less
thanor equd to zero. Pleaserevisethestartingvalues. Nothingfor it... changethe starting values. This
could be aproblemif there ae some gruesome ol ers, in which case you'd haveto edit your data... See
page 132 for detail s of how to interpret and respondto the diagnastics printed along with this error
message.

Your bounday constraint refers to a paameter not yet spedfied.

You have referred to a norexstent row of a matrix. It's slly mistakes like these that my job as a
computer *SO* rewarding. MX has alousy imagination when it comes to that sort of thing.
Youhavereferred to a nonexistent column of a matrix. There aelotsof nonexistent columnsin Athens
and Rome.

You can't use the keyvord Full when reading dagond weight matrices or means.

SORRY | dorit seled DWLSwith corr elationmatricesyet. Try again after midnight? Seriously, I'msorry
abou this.

Error - youseanto havea noninteger valuefor the type of person. Please check (1) you havetheright
pedigreesize here (2) you have an integer type identifier for eveyone (3) Nothing screwed upin an
earlier pedigree Make sure that you have got your VL fileright. Be extra caeful abou SAS missng
values.

Please, you must tell me the @variance matrix structure in terms of id codes. Usethe IC commandto
do this, sometime after MO and kefore End.
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Thereisavariablein thispedigreewhoseid hasnaot been gvenin the IC comnand If nolC was given
avariablewho hasanid greater thanNI is present.. Themysterious granger needsto beidentified and
deleted.

Your model does nat define the cvariance between TWO people with thisID. Of course, by default it
won't. You reed to usethe IC commandcorredly. Seepage 44.

An element of a matrix that you havetried to\sgrt() islessthanzero. Pleasedon't let thishappen! This
version d Mx does not cater for complexnumbers - most of the time.

Youtried to convert a vedor of thewronglength to asymnetric matrix. Hah, didn't think I'd nctice én?
I amonly prepared to raise the dements of a matrix to the power of a scalar. Pleasetry to ensure the
matrixtotheright of a”is(1x1). Doyou have ay better ideas? Kronedkerizeit or something like that?
Youtried to convert a vedor of thewronglength to aFULL square matrix. Silly bill'y.

Eigenvalues of square matrices only, please.

Eigenvedors of square matrices only, please.

I'mafraidthat if youwant to fit to raw data youMUST suppy modelsfor BOTH meansandcovariances.
You haveforgotten amodel for the means. You might forget your head if it wasn’t attached with lots of
sinews etc. Of course, you may have aked for the wrong kind d fit function onthe Optionsline.
I'mafraidthat if youwant to fit to raw data you MUST suppy modelsfor BOTH meansandcovariances.
You haveforgotten amodel for the cvariances. Thisisthe 783rd time you have made this mistakebut
you have probally forgotten abou the other times. Of course, you may have asked for the wrong kind
of fit function onthe Optionsline.

If you are using Multiple fits, it is impossble to change the matrix formulae - and you can't change
boundaies either.

If youwish to Spedfy, Pattern, or matrix a matrix, you haveto spedfy the group number **on the same
line** BEFOREthe Spedfication, Pattern or Matrix statement.

Pleasetry *not* to refer to nonrexistent groups! | dor't mindyou having fantasies, but there are li mits,
you know.

When using the Multi ple option you *MUST* use 3 numbers to spedfy a matrix dement: Group # row
# andcolumn #

I'm*so* embarrassed. | ran ou of workspace

Toread labels for a matrix, you must use the syntax: LABEL <R or C> Name.

Labelscan't be given for a nonexstent matrix. Or rather they @n, but Mx will stop. Actually they can,
but then the program stops immediately.

Labels may not begin with a number because it could confuse me later on.

Labels have not been provided for the data, but you seen to be using them to seled variables. Use
numbers or “"Giveme labelsor giveme..."

It would seam that you ae trying to seled a variable that you reve suppied. | exped that, being
human, you made a mistakein the Labelsor Sedled list.

| can't seled a variable that doesn't exist. Makesurethat NI is corred or fix the Seled list.

Sary, youcan wse mvariancestructuresONLY in constraint or calculation groups; meansnot all owed.
Incorred element of a lower trianguar matrix spedfied.

Hey You must have Ninpuvars=2 to use mntingency tables. A contingency table effedively
crosstabulates two variables, hence NInpuvars must be two onthe Dataline.

I'm afraid that if youwant to fit to contingency tables you MUST suppy models for BOTH thresholds
and covariances. You haveforgotten amodel for the thresholds. Are these lapses of memory getting
morefrequent? Can't remember?? Maybe you reed acheclup... Alternatively youmay have requested
the wrong fit function onthe options line.

I'm afraid that if youwant to fit to contingency tables you MUST suppy models for BOTH thresholds
andcovariances. You haveforgotten amode for the mvariances. Aretheselapses of memory getting
more frequent? Can't remember?? Maybe you reed a checlup... Perhaps you requested the wrong fit
function onthe optionsline?

You must suppdy a matrix expresson for the thresholds that will evaluate to a matrix with 2 rows and
with at least as many columns as one lessthanthe number of row categories or the number of column
categories, whichever isgreater i.e. max(nrowcat-1,ncolcat-1). Seepage69for detail sabout thresholds.
Sary, but during optimization | havebeen asked to calculate a hivariate integral with acorrelation o
1 or more. Thisisvery unreasonale of you Please fix your model so that this doesn't happen. Use
boundaies or something. Note that the crrelationiscriticd here, not the wvariance The @rrelation
iscaculated fromthe expeded covariancematrix (theresult of themodel or covariancestatement) ascov;
+ Vvarvar;.
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Yes | will fit to nx n contingency tables BUT... n must be greater than a equd to 2 | know alxnis
feasible but | haven't written the codefor it yet, OK?

If youwant meto saveor get an Mx binary file then you MUST suppy a filename onthe same line It's
just one of those thingsiin life that you have to da

Wemust havemisunderstoodeach ather somehow. Youcan't get expeded propartions%P froma group
that isn't using contingency tables.

I think memory is rewed up tecause MikeNeale has <rewed up Call himon 804 786 8590Dr better
still, E-mail himon reale@ruby.veu.edu a neale@vcuruby (bitnet). Has srewed up a is <rewed up?
Well well well. Youwould likegraphics. If so why dorit you pu an= after the DR command??? Mx
likes = signs before fil enames. | dorit know how it got into this habit.

Tofit tomeanstructuresaswell ascovariancesyoushoud provide*both* observed meansand amodel
for them (aswell you know!) I'm going to use the cvariances, but the mean - I'mjust goingto ignare
it OK? Watch ou for thisone if you dorit seem to get any adion with the means.

Redly I'mvery vay sorry abou this. It isnot under my control. Unlessof course | wasto use a better
languag thanFORTRAN77 | suppcse... Howeve enough philosophising, the problemisthat we have
reached the end o filetoosoon Since you aeusing * format, you shoud pu one ase per line. That
isto say, there shoud be NObslines each with NI variablesin aRAdatafile. Sometimeserror messges
arenot just explicit, they areintrospedive. How would youliketo be a @mputer program? Could be our
spedes destiny.

Really I'mvery vey sorry abott this. It isnat under my control. Unlessof course | wasto use a better
languag than FORTRAN77 | suppcse... Howevea enough plii osophy, the problem is that we have
reached the end d filetoo soon Make sure that your format is OK. Also, remember there shoud be
NObs* NI numbers in your RAdata file. Seeprevious error message for sci-fi remark.

Very funrny. Hahaha Youwant meto standadize a nonsquare matrix? Just how am| suppcsed to do
that? If you get any ideas, let me know.

Itiswith great sadressthat | havetotel you that | couldn't ssandadize your matrix because the number
I'msuppased to dvidebyistoosmall. Perhapsyoucould avoid thisproblemwith bounday constraints.
Poor madhine, it tried!

Youareinterribledanger. Don't say multiple until thelast group. | know | could havejust remembered
for you, but I'mlazy too! There ae only so many housin the day.

Sary, old chap. Youcan't spedfy bounday constraints after options. | might remedy this problem one
day, but for now just meekly go bad and pu boundiry constraints before the first option line in this
group.

Cough ahem... can you dease give me a matrix that has 1 row and 2 column for the power
transformation?? Currently it is only possble to apply a transformation to al variables within eah
vedor. This shoud be upgraded if thereis ever suppat for Mx; cdl your paliti cd representative now
to safeguard its future...

For heaven's sakel Can't you boundyour constant so that it is *Greater* than minus the minimum
observation?? Redly most nursery schod children have agood ideawhy this sioud be dore.
Exporentiating (espedally for nonrinteger exporents) numbersthat are lessthan zero is mathematically
awkward, requiring complex numbers and so on To avoid complex arithmetic, whase implicaions are
unclea to mein this context, MX demandsthat if, say, your minimum observationis-3.1, the mnstant
required would have to be greaer than +3.1.

YIKES There's omething funny abou the power function you request. Remember that after PO you
shoud suppy 2 numbers. The significancelevé (alpha) (0.0 < alpha< 1), andthe degrees of freedom
of thetest (df > 0). Saretimes NAG chokesif alphaiscloseto O a 1. | can't think why this shoudn't be
self-explanatory. The numbers ioud be onthe same line & the Power keyword. Note that Power in
this context refers to cdculating the statistica power of the study (seepage 108).

| can calculate confidence intervals in the range 0 to 10Q Please try to stay within these bounds.
Everyone has their limits, you know.

Look here buster, the matrix you\muln must have 3 more rows thanit does columns.

Thereisa problemwith the multinormal integral that youtried to compute. Seeif you can be knder to
me by using boung.

Covariance matrices must be computed from sample sizes of at least 1. | susped that you forgot to put
the NObs= parameter onthe data line.

The operationyou atempted using” isundefined in mathematicsin thisuniverse. Try usinge.g. \ahs()
if you can, or goto andher universe!

Look here buster, the matrix you\mnor must have4 more rows thanit does columns.

Unknown matrix operator encourtered!
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Your observed covariance matrix is not positive-definite. Checkthat you aereadingit in the mrrea
format - Full or Symnretric.

Ooops. Sanehow | was expeding a matrix with 4 more rows than columns for the \momnor function.
Remember, theyshoud be organized thisway: Covariance matrix/Mean vedor/Thresholdsin terms of
standadized units/Seledion vedor: 1=above -1=below, 0=not seleded/Quadrature parameter
O=default=16; max=64.

Ahal You havetried to use algebra to create a matrix that already exsts. Thisis grictlyillegal in Mx.
Go diredly to Jail. Do nd passgo. Do na collea $200 And makesure you haven't forgotten the End
Algebra; statement.

Hmmmyou can't call a matrix this. Not yet. Use single letters (A-Z) for now.

After the BEGIN keyword | expeded to seeone of the keywords ALGEBRA or MATRICES. Areyou
dyslexic? Or am1?

Well | wastryingto find the above daracter, but even thoughl looked throughthe wholefile. | could
not findit. Perhapsyouforgot it?

You seemto have put two hinary operators in arow, which is badsyntax. Might this be a typo? Just
possbly?

| figure that you are trying to redefine something in this multi-group script but you have not used a
#define Group = n statement yet so | don't know which groupit is youwish to change.

Oh noyou dont. Youcan't use a #dfine group statement unlessyou ae (or rather | am) in multiple
fit mode.

Sary, | don't understandwhat you aretrying to #define.

While searching for a number, | encourtered astringmore than 32characterslong At first, | thought
it might be a gobd variable, but it is probaly just your mistake

*So* sorry! Youcan't use!@ inthetitle. It might confuse my front end.

I wastryingto read a number or a #dfine'd paameter, and dthoughl found a @i miter, | got to the
end d theline before | found the number.

I know thisis rather sill y of me, but | really need to know both NI= andNO= in order to read the data
sensibly. Pleaselook at the DA line.

Error: file not found Checkspelling andexstence of file. Remember that UNIX is case sensitive
Filenames have a maximum of 80 characters including dredory.

Oncel saw the begin keyword, | though, ‘Ahal bet this user isgoingto say algebra or matrices nex.’
Well | lost my bet. | don't know what youwant to begin.

You seamto betrying to end matrices with something aher than‘end matrices;’. It'snat that diffi cult,
isit?

Thisisa generic eror message of no use to youwhatsoeve. Lots of software has error messages like
this, so | though Mx shoud too. Please mntact Mike Neale (neale@ruby.vecu.edu) for help.
I"'mterribly sorry abou thisold chap. Youcan't use QQ asa missng daa flag. It's Just one of those
things.

Ohboy. Therel wastryingto read stuff inred¢angudar format for you. Andthen| cameacrossa bank
recrd. | susped a mistake

Ker-splat! | ran into some peadliar FORTRAN read error. Check the data file for Suspicious
Characters.

An error has occurred whilereading aredanguar file. Makesurethat you *dorit* havea FORMAT
at the beginning and nee, | can't read numbers that begin with D, Q or E.

OooooH Weird ore. Your data file seamsto be empty.

Sary, I'mjust not ready to saveat this paint.

Thismight seem a hit pickyof me, but if you aegoingto simulatedata. I'd liketo know HOW MANY
casesto simulate. Please give NI=n onthe Smulate line, wherenisa pasitiveinteger. Thark you.
Now look here. To simulate data you reed to have a matrix formula for the Covariances which is
*Squae*, i.e., rows = columns above

Well therel was, all ready to equate all the matricesinthisgroupto those of a previousgroup, andthen
you ddn't put *which* group onthe sameline. Try, e.g., Matrices= Group 1 Note that you *must*
have a space after the word group.

Unbdanced parenthesesin your formula. I'mnot biginto Yin & Yan bu thisisoneareathat I'd like
more balance

| can't give youthe sort order of this*column vedor* because it has more than ore wlumn!!
Partitionrequires g/ntax \part(A,B) where B has 4 rows and ore wlumn. Sanehow you ddn't dothis
right.

No no no The secmndmatrixin thelist \part(A,B) must have4 rows and 1column.
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187. I'mafraid that youcan't use & between matricesthat are not conformable. In this case, the number of
columnsin the first matrix must equd the number of rows in the second matrix, which must be square
(rows of b=cols of b).

188 Look, how am| suppased to know what these dements outside the dimensions of the matrix are??

189, Thepartitionfunctionistricky, | know. Makesurethat the wordinate (2nd) matrix has been initialized
FIRST. Seethe example partit.mx for details on hav to dothis.

190, OKwiseguythat'sfar enough Thegroupyoureferenced with %0 doesn’t havean olserved covariance
matrix!

191 Thematricesyouwish to divide with % are not conformable. The number of rowsin matrix 1 must be
the same as the number of rowsin matrix 2, *and* the number of columnsin matrix 1 must be the same
as the number of columnsin matrix 2.

192 | believe pureadin the inverse of a weight matrix, sir? In that case you can't use seled variables,
becuse it defeats the paint of saving time by pre-inverting.

193 Tousethe computed matrix type, you haveto put = M 1 onthe sameline, where M isa matrix and lis
anearlier group. I'mnoat psychic. How am | suppased to know which computed matrix you warnt it to
equd?

194, Hangon aminute! You can *only* use the mmputed matrix type to refer to matrices generated in a
Begin Algebra sedion.

195 Yoo-hod You're suppcsed to aletter here...

196, Gadzooks! You ddn’'t supply a compute statement in that group. Therefore, | can't make this matrix
equd to the %E of it.

197. Huh?Il dortunderstandyour optiond commandline parameters. Syntax shoud be eg.,: mx-f-h-k100
myfile.mx myfil e.mxo where f denotes frontend, h requests html, andk is workspace Note: -f implies
reading fromkeyboard andwriting to screen.

198 Youmust put the fil ename on the same line when using ! @get,! @put or ! @exist.

199, Huh?

200. File exsts; use ' @PUT! to overwriteit.

Some of these @ror messages are alittl einformal. | apdogize. I'mterribly terribly sorry
and | wont doit again.

What | amredly sorry about isif Mx givesyouthewrong error message. Thisisquiterare,
but occasiondly it is posgble to screw up memory, and one of the sensitive aeas is the
matrix formula. When this has occurred, you may see

“Dump of formula being calculated”

whilethe programisrunring. Itisimportant to chedk theformulage bu if they seem ok, it’s
time to email technicd suppat. One untrapped sourceisif you say

Start 5A123toA223

in which case everything between the memory addresses of A of group land A of group 2
gets overwritten with .5. A little cae can go along way; so can a littl e more foolproof
programing which | shall try to provide & onas | can. Pleasse let me know of any
norsensicd error messages that you get; elucidationis prerequisite for elimination.
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Appendix C Introduction to Matrices

C.1 TheConcept of aMatrix

A matrix is atable of numbers or symbaslaid out in rows and columns, e.g.

Oy Oy Og3

U3y U3y gz
Thetableisenclosedin () or [ ] in most texts.

Itisconventional to spedfy the configuration of the matrix interms of RowsxColumnsand
theseareitsdimensions. Thusthefirst matrix aboveisof dimensions 3 by 2 andthe second
isa3x 3 square matrix.

The most common cccurrence of matrices in behavioral sciencesisthe data matrix where
the rows are subjeds and the columns are measures. e.g.

WL Ht.
S [ 50 20
S, [100 40
s, [150 60
S, 200 80

It is convenient to let a single letter symbalize amatrix. Thisis written in UPPERCASE
boldface

Thuswe might say that our datamatrix isA, which in handwriti ng wewould uncerlinewith
either a straight or a wavy line. Sometimes a matrix may be written ,A, to spedfy its
dimensions. When amatrix consists of asinglenumber, it iscdl ed ascalar; whenit consists
of single olumn (row) of numbersit iscadled a wlumn (row) vedor. Vedorsare normally
represented as abold lowercase. Thus the weights of our four subjeds are

50
100
150
200,
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C.2 Matrix Algebra

Matrix algebra defines a set of operations that may be performed on matrices. These
operations include aldition, subtradion, multi pli cation, inversion (multi plication by the
inverseis gmilar to dvision) and transpasition.

Transposition

A matrix is transposed when the rows are written as columns and the @lumns are written
asrows. Thisoperationisdenoted by writing A’ or A'. In our example,

50 100 150 200
20 40 60 80

arow vedor isusually written

a’ - (50 100 150 200

Clealy, (A')' = A.
The Mx script would look as foll ows:

Title: transpose of matrix A
Calculation NGroups=1

Begin Matrices;
A Full 4 2
End Matrices:;
Matrix A

50 20

100 40

150 60

200 80

Begin Algebra;
B=A";
End Algebra;
End

Matrix Addition and Subtraction
Matricesmay be added andto doso they must be of the same dimension. They arethen said

to be conformable for addtion. Each element in the first matrix is added to the
correspondng element in the second matrix to form the same dement in the solution, e.g.
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14 8 11 9 15
25 +]19 12| = (11 17
10 13 13 19

or symbdlicdly, A+B =C.

Y oucannd add
8 10
+
9 11

Subtradion works in the same way as addition, e.g.

whichiswritten A -B =C.
Matrix Multiplication

Matrices may be multi pli ed andto doso they must be conformable for multi plication. This
means that adjacent columns androws must be of the same order. For example, the matrix
product ;A ,%,B, may be cdculated; theresult isa3x 2 matrix. In general, if we multi ply two
matrices A, %;By, the result will be of order ixk.

Matrix multi pli cation involves cdculating a sum of crossproducts among rows of thefirst
matrix and columns of the secondmatrix in al possble cmbinations, e.g.

14 3 I1x1 + 4x2 1x3 + 4%x4 9 19
25 (2 4] = | 2x1 + 5x2 2x3 + 5x4| = |12 26
36 3x1 + 6x2 3x3 + 6%x4 15 33

Thisiswritten AB =C.

The only exception to the aove rule is multiplication by a single number cdled ascdar.
Thusfor example,



158 Appendices

14 2 8
2 125 =14 10
36 6 12

by conventionwe writethis2 A.
Itisnat posgble to usethis convention dredly in Mx; however, it is possbleto define a
1x 1 matrix with the constant 2.0 as the sole dement, and wse the kronedker product.

The simplest example of matrix multiplication is to multiply a vedor by itsdf. If we
premulti ply a wlumn vector by itstranspose, the result isascdar cdled theinner product.
For example, if

a’=(1 23
then the inner product is
1
aa=(123 |2 = 12+22+3F = 14
3

whichisthe sum of the squares of the dements of thevedor A. Thishasasimple graphicd
representationwhen A is of dimension 2x1 (seeFigure C.1).

Figure C.1 Graphicd representation d theinner product @' a of a(2x 1) vedor a, with
a'=(xy). By Pythagoras' theorem, the distanceof the point V fromthe origin O is y/x?+y?,
which isthe square roct of the inner product of the vedor.
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Multiplication Exercises

Try these exercises either by hand, a using Mx, or both, as slits your needs.

Let
36 1 0 3 2
A = , B =
21 0-1-11
1. FormAB.
2. FormBA. (Careful, this might be atrick question!)
Let
36 12
C = , D=
21 34
1. FormCD.
2. FormDC.
3. Inordinary agebra, multiplicaionis commutative, i.e. Xy=yx. In general, is matrix

multi pli cation commutative?
4.  Show for two (preferably nontrivial) matrices conformable for multi plicaion that

(AB)' =B'A’
Let
103
E' =
121
1. FormE(C+D).
2.  FormEC + ED.
3. Inordinary algebra, multiplicaionisdistributive, i.e. X(y+2z) = xy+xz. In general, is

matrix multi plication dstributive?
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C.3 Equationsin Matrix Algebra

Matrix algebra provides a very convenient short hand for writing sets of equations. For
example, the pair of simultaneous equations

Y1 = 2 + 3%
Yo =X %
may be written
y' = AX

WREIN

Also if we have the foll owing pair of equations:

y = AX
X = Bz
Then
y = A(B2
= ABz
= Cz

where C=AB. This is very convenient notation compared with dred substitution.
Structural equations are written in this general form, i.e.
"Real variables (y) = matrix x hypothetical variables."

To show the ssimplicity of the matrix natation, consider the foll owing equations:

y, = 2X + 3%,
Yo =X %
X =7+
=454

Then we have
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i =27 +z) + 3z - z)
=92 - %
Y, =(z +2) +(z - 2)
=22 +0
From y=ABz, where
[2 3) (1 1)
A - , B -
11 1 -1
and
5 —1)
AB = ,
2 0
or
Y1 =92 - %
Y, = 2%

C.4 Calculation of CovarianceMatrix from Data M atrix

Suppce we have adata matrix A with rows correspondng to subjeds and columns
correspondng to variables. We can cdculate amean for ead variable and replacethe data
matrix with amatrix of deviations fromthe mean. That is, eat element a; isreplaced by
a;— |, where ; isthe mean of the " variable. Let us cal the new matrix X. The covariance
matrix isthen simply cdculated as:

1 x'X
N-1

where N is the number of subjeds.

For example, suppase we have the foll owing data:

X Y X-X_ Y-Y
1 2 -2 -4
2 8 -1 2
3 6 0
4 4 -2
5 10 4
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30 the matrix of deviations from the mean is

-2 -4
-1 2
X=]1 00
1 -2
2 4

and therefore the mvariance matrix of the observationsis

2 4
> 10 12| * °
ix/x _1
N-1 al-2 20 24
2
4

(25 30]
130 100
|ss
Sy §
The wrrelationis
Sy . Sy
sqrtsfg,z Sﬁ/

In general, a correlation matrix may be cdculated from a wvariance matrix by pre- and
post-multi plying the covariance matrix by a diagond matrix D in which each diagonal
element d; is1+S, i.e. theredprocd of the standard deviationfor that variable. Thusin ou
two variable example, we have:

L[S 8] |5 ° _(1%)
Yls g o) (R

o vk
o ><(/)|b—\



Appendices 163

Transformations of Data M atrices

Matrix algebraprovidesanatural notationfor transformations. If we premulti ply the matrix
iB; by ancther, say , T;, then the rows of T describe linea combinations of the rows of B.
The resulting matrix will therefore nsist of k rows correspondng to the linea
transformations of the rows of B described by therowsof T. A very simple example of this
is premulti plication by the identity matrix (written 1), which merely has 1's on the leading
diagonal andzeroeseverywhere dse. Thusthetransformation described by thefirst row may
be written as'multiply the first row by 1 and add zero times the other rows." In the second
row, we have 'multi ply the sscondrow by 1 and add zero times the other rows," and so the
identity matrix transforms the matrix B into the same matrix. For alesstrivial example, let

our datamatrix be X, then
-2 -10 1 2
X/ =
-4 20 -2 4

(1)

and let

then

Y/ = TX!
6 10 -1 6
2 30 3 -2

Inthiscase, thetransformationmatrix spedfiestwo transformationsof thedata: thefirst row
defines the sum of the two variates, and the secondrow definesthe diff erence(row 1 - row
2). In the a&ove, we have gplied the transformation to the raw data, bu for these linea
transformations it is easy to apply the transformation to the covariance matrix. The
covariancematrix of the transformed variatesis

1 1

Y = (TX)(TXY

E 7 XTXx)
1

= —— TX/XT'
N_
=TV, T’
which isauseful result, meaning that linea transformations may be gplied dredly to the

covariance matrix, instead of going to the troube of transforming al the raw data and
recdculating the @variance matrix.
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Determinant of a Matrix

For asquare matrix A we may cadculate ascdar cdled the determinant which we write &
[Al. In the cae of a2x 2 matrix, this quantity is cdculated as

Al = a,8),-a,,8,,.

The determinant has an interesting geometric representation. For example, consider two
standardized variables that correlate r. This stuation may be represented graphicdly by
drawing two vedors, ead o length 1.0, faving the same origin and an angle csine r
betweenthem (seefigure C.2). It can beshown (i.e. thisisatoughiethat involves symmetric
sguare root decompasition d matrices, eigenvalues etc. that I'm not going to do tere) that
the area of the triangle OV,V, is .5/JA|. Thus as the rrelation r increases, the angle
between the lines deaeases, the aeadeaeases and the determinart deaeases. For two
variablesthat correlate perfedly, the determinant of the correlation (or covariance) matrix
is zero. For larger numbers of variables, the determinant is a simple function d the
hypervolume in nspace if any single pair of variables correlates perfedly then the
determinant is zero. In addition,if one of the variablesisalinea combination d the others,
the determinant will be zero.

FigureC.2 Geometric representation d thedeterminant of amatrix. The angle between
thevedorsisthe asineof the wrrelation betweentwo variables, so thedeterminant isgiven
by twicethe aeaof the triangle OV, V..

To cdculate the determinant of larger matrices, we anploy the concept of a cofactor. If we

deleterow i andcolumnj froman nx nmatrix, then the determinant of the remaining matrix
iscdled the minor of element ;. The cfador, written A; is smply:

Ay = (-1 minor a
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The determinant of the matrix A may be cdculated as
n
Al = 21: 3 A
I=

where nisthe order of A.

The determinant of amatrix isrelated to the amncept of definitenessof amatrix. In general,
for anull column vedor x, the quadratic form x’Ax is aways zero. For some matrices, this
quadraticiszero only if x isthenull vedor. If x’Ax>0for al nonnull vedorsx then we say
that the matrix is positi ve definite. Conversely, if x' Ax<0 for al nortnull x, we say that the
matrix isnegative definite. However, if we can find some non-null x such that x’ Ax=0 then
thematrix is sid to besinguar, anditsdeterminant iszero. Aslong asnotwo variablesare
perfedly correlated, and there ae more subjeds than measures, a @variance matrix
cdculated from data onrandam variables will be paositive definite. Mx will complain (and
rightly so!) if it is given a mvariance matrix that is not positi ve definite. The determinant
of the wvariance matrix can be helpful when there ae problems with model-fitting that
seam to ariginate with the data. However, it is possble to have amatrix with a positive
determinant yet whichis negative definite (consider -1 with an even number of rows), so the
determinant is not an adequate diagnostic. Instead we nate that all the egenvalues of a
positi ve definitematrix aregreaer than zero. Eigenvaluesand eigenvedors may beobtained
from software padkages and the numericd li braries li sted above™.

Inverse of aMatrix

Just asthere aemany usesfor the operation d divisionin ordinary agebra, there ae many
valuable appli cations of theinverse of amatrix. Wewritetheinverse of thematrix A asA™,
and ore of the most important resultsis that

AAL = |

where | isthe identity matrix. In this case, the multiplicaion operation is commutative, so
it isalso true that

AlA = |

There are many computer programs avail able for inverting matrices. Some routines are
general, but there ae often faster routines available if the program is given some
information abou the matrix, for example whether it is ymmetric, pasitive definite,
triangular or diagonal. Here we describe one general method that everyone shoud use &
least oncein their livesfor at least a 3% 3 matrix.

M Thase readers wishing to know more ot the uses of eigenvalues and eigenvedors may consult Seale
(1982 or any genera text on matrix algebra.
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Procedure for Inversion of a General Matrix

In order to invert amatrix, the foll owing four steps can be used:

Find the determinant

Set up the matrix of cofadors

1
2
3. Transpose
4

Divide by the determinant

For example, the matrix

Al = (1x5)-(2x1) = 3

-(—1)2><5 (-1)°x1

A (1>4x1]

5 -1
2 1

Al-1
3

I
°°|»—- wlo
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To verify this, we can multiply AA~* to oltain the identity matrix:

2693696

The result that AA™* =1 may be used to solve the pair of simultaneous equations:

X +2X, = 8
X +9X, = 17
which may be written
12| (% 8
15) |x) (17
i.e
AX =y

AlAx =
X =

which may be verified by substitution.

For alarger matrix it is more tedious to compute the inverse. Let us consider the matrix
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1. The determinant is

01 11 1 0
Al = +1 - 0
-10 10 1 -1
= +1+1+0
=2
2. The matrix of cofadorsis:
01 |11 |1 o
+ - +
-1 0 |10 |1 1
10 |10 |1 1
Aij =T + -
-1 0 |10 |1 1
10 10 11
+ - +
01 11 1 0]
1 1 -1
=10 0 2
1 -1 -1
Thetransposeis
10 1
Al=| 101
-1 2 -1
Dividing by the determinant, we have
10 1 50 5
A*1:% 10 -1/ -| 50 -5
-1 2 -1 -51 -5

which may be verified by multiplicaionwith A to oltain the identity matrix.
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Appendix D Reaprocal Causation

Consider the Path Diagramin Figure D.1.
) m— )
a

Figure D.1 Feadbad loop ketween two variables, x, and x,.

v

Thisshowsafeedbad loop etween two internal variables, which we cdl x variables. The
total variance of x, and x, is the sum of the infinite geometric series:

2.2 3.3
88y, * BBy * By -

Itis smpleto show that if |a,;a,,| < 1 then the series converges. Let the sum of the series
of ntermsbe cdled S, andlet a,,a,,=r. Then

S=r +r? +r3«+ . g"

r§=r2 +r® . " +rt

Thus the diff erence between these two equationsis:

@-ns =r-rnt

and so
r-rn?t
S -
" 1-r
which as n gets large tends to
r
S E e—
R R {
-1 _1-r
1-r 1-r
__1 -1
1-r
- 1 -1
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Thisformulagenerali zesto the cae of amatrix of such eff eds between more than a pair of
variables (Joreskog & Strbom, 1989. In general

A+A2+A% .. = (1 -A)t I

Anather way to seethis formulation is diredly from the structural equations. Figure D.2
shows a multi variate path dagram of a structural equation model, where x variables are
caused by aset of independent variables, y. In addition, the x variables may cause eat
other, hencethe unidiredional arrow from x to itself.

S
(P
9

(D

Figure D.2 Structural equation model for x variables

Algebraicdly, the model for the x variablesis:

X = AX+l1z
= AX+Z

Here x appeas on bah sides of the equation, and we want it solely in terms of the other
variablesin the model. Hence

X-AX =z

(I-A)x =z
(I1-A)Y-A)x = (1-A)'z
x =(1-A)!z

xx' = (I -A)tz((l -A) 12
- (1-A)1zZ(1 -A)Y
= (1-A)1s(-A)Y

This givesageneral expresgonfor al variablesin amodel, bah latent and olserved. We
usually want to predict the covariancebetween the observed variables only, so that thiscan
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be compared with (“fitted to”) thedata. A slight additiontothe model isneeded tofilter the
observed variables from the set of all variables (seefigure D.3).

S
P

N

Figure D.3 Structural equation model for y variables
The dgebrafor the wvariance of the observed variables, v, isvery similar.

y = Fx
F(I-A)?z

F(I-A)z(F(1 -A) 12
F(I-A)zZ(1 -A)YF
F(I-A)1S( -A) YF/

yy’

Thismodel can efficiently and elegantly be spedfied in MX using the formula:

F&((I -A)&S)

which invokes the quadratic operator & (seep. 57).
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Appendix E Frequently Asked Questions

Hereisalist of some of the frequently asked questions abou Mx GUI.

Q. My jobistaking alongtimeto run. How can| seewhat's happening? A. If you
arerunring ajob onthelocd PC, thenyoucan doube dick onthe MXE iconwhich
will give adisplay of the progressof the optimization. Every 20iterationsthe value
of thefit functionwill beupdated. If youarerunringonaUnix hgst, thenthereisn't
much that can be dore, except to log in to the macdhine. If you have used Option
NAG=10 DB=1 then you could view (e.g. using more or tail) the end d the
NAGDUMP.OUT filefor the latest set of parameter estimates and fit function.

Q. What does ‘ Appears OK’ mean as a fit result? What abou the other codes? A.
Appeas OK meansthat optimization seemsto be successul. Optimizationisnat an
exad science so we can't be 100% sure that aglobal optimum has been found. The
other codes and what you shodd do abou them are shown in
Table~\ref{ tab:optcodes} in this document.

Q. How can| learn more about the Mx script languag? A. Chapters ## and the
quick reference dart are the best placeto lean the language, with the possble
exception of attending a awurse. To date most MXx courses have mncerned genetic
models, athough some nongenetic courses have been run at the University of
Southern California and The University of Arizona. Future aurseswill be annourced
onthe Mx web page http://views.vcu.edu/mx.

Q. Help! My diagram has disappeaed in the windowv when | was zooming. How do
| get it bacdk? A. Pressthe zoomundo buton (3.

Q. How do | sdled a dfferent browser or tex file viewer? A. Sded
Preferences|Seled Test Viewer or Preferences|Seled HTML Viewer from the menu
bar.

Q. Howdol work with contingencytable datain the GUI? A. Unfortunately it isnat
possble to model contingency table datawith the GUI at thistime. It isposdbleto
draw a diagram for two olserved variables (leare them unmapped) and then hit To
Script to buld a basic script from a two-variable model. Then edit this <ript to
replacethe CMatrix with CTable data andadd amodel for the thresholdsin the script
itself. This does at least avoid the scary part of spedfying the structural equation
model with matrix algebra. Wehopeto add contingency table modelinginthefuture.
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